What is the simplified form of [tex]\( 4 \log_3 x + 6 \log_3 y - 7 \log_3 z \)[/tex]?

A. [tex]\( \log_3 \left(\frac{x^4 y^6}{z^7}\right) \)[/tex]

B. [tex]\( \log_3 \left(\frac{(x y)^{10}}{z^7}\right) \)[/tex]

C. [tex]\( \log_3 \left(\frac{3 x y}{z}\right) \)[/tex]

D. [tex]\( \log_3 \left(\frac{24 x y}{7 z}\right) \)[/tex]



Answer :

To simplify the expression [tex]\(4 \log_3 x + 6 \log_3 y - 7 \log_3 z\)[/tex], follow these steps:

1. Apply the Power Rule of Logarithms:

The power rule of logarithms states that [tex]\( n \log_b a = \log_b (a^n) \)[/tex]. Applying this rule to each term in the expression:
[tex]\[ 4 \log_3 x = \log_3 (x^4) \][/tex]
[tex]\[ 6 \log_3 y = \log_3 (y^6) \][/tex]
[tex]\[ 7 \log_3 z = \log_3 (z^7) \][/tex]

2. Rewrite the Expression:

Substitute the simplified logarithmic terms back into the expression:
[tex]\[ \log_3 (x^4) + \log_3 (y^6) - \log_3 (z^7) \][/tex]

3. Apply the Addition Rule of Logarithms:

The addition rule of logarithms states that [tex]\( \log_b (a) + \log_b (c) = \log_b (a \cdot c) \)[/tex]. Combine the first two logarithms:
[tex]\[ \log_3 (x^4) + \log_3 (y^6) = \log_3 (x^4 \cdot y^6) \][/tex]

4. Apply the Subtraction Rule of Logarithms:

The subtraction rule of logarithms states that [tex]\( \log_b (a) - \log_b (c) = \log_b (a / c) \)[/tex]. Combine the results of the addition with the final term:
[tex]\[ \log_3 (x^4 \cdot y^6) - \log_3 (z^7) = \log_3 \left( \frac{x^4 \cdot y^6}{z^7} \right) \][/tex]

Therefore, the simplified form of the expression [tex]\(4 \log_3 x + 6 \log_3 y - 7 \log_3 z\)[/tex] is:
[tex]\[ \log_3 \left( \frac{x^4 \cdot y^6}{z^7} \right) \][/tex]

This corresponds to the given option:

[tex]\(\log_3 \left( \frac{x^4 y^6}{z^7} \right)\)[/tex]

So, the correct answer is:
[tex]\[ \boxed{\log_3 \left( \frac{x^4 y^6}{z^7} \right)} \][/tex]