Line AB contains points A(4,5) and B(9,7). What is the slope of AB?

A. -[tex]\(\frac{5}{2}\)[/tex]
B. -[tex]\(\frac{2}{5}\)[/tex]
C. [tex]\(\frac{2}{5}\)[/tex]
D. [tex]\(\frac{5}{2}\)[/tex]



Answer :

To find the slope of the line passing through the points [tex]\( A(4, 5) \)[/tex] and [tex]\( B(9, 7) \)[/tex], we use the slope formula:

[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\( (x_1, y_1) = (4, 5) \)[/tex] and [tex]\( (x_2, y_2) = (9, 7) \)[/tex].

Substitute these coordinates into the slope formula:

[tex]\[ \text{slope} = \frac{7 - 5}{9 - 4} \][/tex]

Calculate the differences in the numerator and the denominator separately:

[tex]\[ y_2 - y_1 = 7 - 5 = 2 \][/tex]
[tex]\[ x_2 - x_1 = 9 - 4 = 5 \][/tex]

Now, divide the difference in the [tex]\( y \)[/tex]-coordinates by the difference in the [tex]\( x \)[/tex]-coordinates:

[tex]\[ \text{slope} = \frac{2}{5} \][/tex]

Therefore, the slope of [tex]\(\overrightarrow{AB}\)[/tex] is:

[tex]\[ \boxed{\frac{2}{5}} \][/tex]