If [tex]\( f(x) = -x^2 + 6x - 1 \)[/tex] and [tex]\( g(x) = 3x^2 - 4x - 1 \)[/tex], find [tex]\( (f + g)(x) \)[/tex].

A. [tex]\( (f + g)(x) = 2x^2 - 10x \)[/tex]
B. [tex]\( (f + g)(x) = 2x^2 + 2x - 2 \)[/tex]
C. [tex]\( (f + g)(x) = 4x^2 + 10x + 2 \)[/tex]
D. [tex]\( (f + g)(x) = -4x^2 + 10x \)[/tex]



Answer :

To find [tex]\((f+g)(x)\)[/tex], we need to sum the functions [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].

Given:
[tex]\[ f(x) = -x^2 + 6x - 1 \][/tex]
[tex]\[ g(x) = 3x^2 - 4x - 1 \][/tex]

First, let's sum these two functions:

[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]

So,
[tex]\[ (f + g)(x) = (-x^2 + 6x - 1) + (3x^2 - 4x - 1) \][/tex]

Next, we combine like terms:
- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(-x^2 + 3x^2\)[/tex]
- Combine the [tex]\(x\)[/tex] terms: [tex]\(6x - 4x\)[/tex]
- Combine the constant terms: [tex]\(-1 - 1\)[/tex]

Perform the additions:

[tex]\[ -x^2 + 3x^2 = 2x^2 \][/tex]
[tex]\[ 6x - 4x = 2x \][/tex]
[tex]\[ -1 - 1 = -2 \][/tex]

Putting it all together, we get:

[tex]\[ (f + g)(x) = 2x^2 + 2x - 2 \][/tex]

Thus, the correct choice is:

[tex]\[ \boxed{B: (f+g)(x) = 2x^2 + 2x - 2} \][/tex]