If [tex]\( f(x) = 2x^2 - 5 \)[/tex] and [tex]\( g(x) = 3x + 3 \)[/tex], find [tex]\((f - g)(x)\)[/tex].

A. [tex]\(3x - 2x^2 - 2\)[/tex]

B. [tex]\(2x^2 - 3x - 8\)[/tex]

C. [tex]\(-x^2 - 8\)[/tex]

D. [tex]\(2x^2 - 3x - 2\)[/tex]



Answer :

To solve the problem of finding [tex]\((f - g)(x)\)[/tex], where [tex]\(f(x) = 2 x^2 - 5\)[/tex] and [tex]\(g(x) = 3x + 3\)[/tex], we need to subtract the function [tex]\(g(x)\)[/tex] from the function [tex]\(f(x)\)[/tex]:

1. Write down the expressions for [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex]:
[tex]\[ f(x) = 2x^2 - 5 \][/tex]
[tex]\[ g(x) = 3x + 3 \][/tex]

2. Subtract [tex]\(g(x)\)[/tex] from [tex]\(f(x)\)[/tex]:
[tex]\[ (f - g)(x) = f(x) - g(x) = (2x^2 - 5) - (3x + 3) \][/tex]

3. Distribute the negative sign through the expression [tex]\(g(x)\)[/tex]:
[tex]\[ (f - g)(x) = 2x^2 - 5 - 3x - 3 \][/tex]

4. Combine like terms:
[tex]\[ (f - g)(x) = 2x^2 - 3x - 8 \][/tex]

So, the function [tex]\((f - g)(x)\)[/tex] is:
[tex]\[ (f - g)(x) = 2x^2 - 3x - 8 \][/tex]

Thus, the correct answer is:

B. [tex]\(2x^2 - 3x - 8\)[/tex]