If [tex]\( JM = 5x - 8 \)[/tex] and [tex]\( LM = 2x - 6 \)[/tex], which expression represents [tex]\( JL \)[/tex]?

A. [tex]\( 3x - 2 \)[/tex]
B. [tex]\( 3x - 14 \)[/tex]
C. [tex]\( 7x - 2 \)[/tex]
D. [tex]\( 7x - 14 \)[/tex]



Answer :

To determine the expression that represents [tex]\( JL \)[/tex], follow these steps:

1. Given expressions:
- [tex]\( JM = 5x - 8 \)[/tex]
- [tex]\( LM = 2x - 6 \)[/tex]

2. Find the expression for [tex]\( JL \)[/tex]:

[tex]\( JL \)[/tex] can be found by adding the expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:

[tex]\[ JL = JM + LM \][/tex]

3. Substitute the given expressions:

[tex]\[ JL = (5x - 8) + (2x - 6) \][/tex]

4. Combine like terms:

Add the [tex]\( x \)[/tex]-terms together and the constant terms together:

[tex]\[ JL = 5x + 2x - 8 - 6 \][/tex]

5. Simplify the terms:

[tex]\[ JL = 7x - 14 \][/tex]

Thus, the expression that represents [tex]\( JL \)[/tex] is [tex]\( 7x - 14 \)[/tex].

The correct answer is:

[tex]\[ \boxed{7x - 14} \][/tex]