To determine the expression that represents [tex]\( JL \)[/tex], follow these steps:
1. Given expressions:
- [tex]\( JM = 5x - 8 \)[/tex]
- [tex]\( LM = 2x - 6 \)[/tex]
2. Find the expression for [tex]\( JL \)[/tex]:
[tex]\( JL \)[/tex] can be found by adding the expressions for [tex]\( JM \)[/tex] and [tex]\( LM \)[/tex]:
[tex]\[
JL = JM + LM
\][/tex]
3. Substitute the given expressions:
[tex]\[
JL = (5x - 8) + (2x - 6)
\][/tex]
4. Combine like terms:
Add the [tex]\( x \)[/tex]-terms together and the constant terms together:
[tex]\[
JL = 5x + 2x - 8 - 6
\][/tex]
5. Simplify the terms:
[tex]\[
JL = 7x - 14
\][/tex]
Thus, the expression that represents [tex]\( JL \)[/tex] is [tex]\( 7x - 14 \)[/tex].
The correct answer is:
[tex]\[
\boxed{7x - 14}
\][/tex]