Simplify the following expressions:

1. [tex]\( \frac{22}{0} \)[/tex]

2. [tex]\( \frac{(05) 15-125)-18}{1(3)-9} \)[/tex]

3. [tex]\( -10-12(x)+18-10 \)[/tex]



Answer :

Okay, let's simplify the given mathematical expressions step-by-step:

1. Simplify the division [tex]\(22 / 0\)[/tex]:
- Division by zero is undefined in mathematics. Therefore, we cannot proceed with this part of the expression. Let's move on to the next part.

2. Simplify the numerator of the fraction [tex]\(\frac{(0 \cdot 15 - 125) - 18}{1 \cdot 3 - 9}\)[/tex]:

- Start by calculating [tex]\(0 \cdot 15\)[/tex], which equals 0.
- Next, subtract 125 from 0: [tex]\(0 - 125 = -125\)[/tex].
- Now subtract 18 from -125: [tex]\(-125 - 18 = -143\)[/tex].

So, the simplified numerator is [tex]\(-143\)[/tex].

3. Simplify the denominator of the fraction [tex]\(\frac{(0 \cdot 15 - 125) - 18}{1 \cdot 3 - 9}\)[/tex]:

- Start by calculating [tex]\(1 \cdot 3\)[/tex], which equals 3.
- Next, subtract 9 from 3: [tex]\(3 - 9 = -6\)[/tex].

So, the simplified denominator is [tex]\(-6\)[/tex].

4. Simplify the expression [tex]\(10 - 12x + 18 - 10\)[/tex]:

- Combine the constant terms: [tex]\(10 + 18 - 10 = 18\)[/tex].
- The term involving [tex]\(x\)[/tex] is [tex]\(-12x\)[/tex].

Hence, the simplified expression is [tex]\(18 - 12x\)[/tex].

Given these steps, the simplified results for the question are:
- The numerator of the fraction is [tex]\(-143\)[/tex].
- The denominator of the fraction is [tex]\(-6\)[/tex].
- The simplified arithmetic expression is [tex]\(18 - 12x\)[/tex].

Other Questions