If [tex]\( f(x) = \sqrt{x} + 12 \)[/tex] and [tex]\( g(x) = 2 \sqrt{x} \)[/tex], what is the value of [tex]\( (f-g)(144) \)[/tex]?

A. -84
B. -60
C. 0
D. 48



Answer :

To find the value of [tex]\((f - g)(144)\)[/tex] given the functions [tex]\(f(x) = \sqrt{x} + 12\)[/tex] and [tex]\(g(x) = 2\sqrt{x}\)[/tex], follow these steps:

1. Evaluate [tex]\(f(x)\)[/tex] for [tex]\(x = 144\)[/tex]:
[tex]\[ f(144) = \sqrt{144} + 12 \][/tex]
Since [tex]\(\sqrt{144} = 12\)[/tex],
[tex]\[ f(144) = 12 + 12 = 24 \][/tex]

2. Evaluate [tex]\(g(x)\)[/tex] for [tex]\(x = 144\)[/tex]:
[tex]\[ g(144) = 2 \sqrt{144} \][/tex]
Since [tex]\(\sqrt{144} = 12\)[/tex],
[tex]\[ g(144) = 2 \times 12 = 24 \][/tex]

3. Compute [tex]\((f - g)(144)\)[/tex]:
[tex]\[ (f - g)(144) = f(144) - g(144) \][/tex]
Substituting the values obtained,
[tex]\[ (f - g)(144) = 24 - 24 = 0 \][/tex]

Thus, the value of [tex]\((f - g)(144)\)[/tex] is [tex]\(\boxed{0}\)[/tex].