For one month, Siera calculated her hometown's average high temperature in degrees Fahrenheit. She converted that temperature from degrees Fahrenheit to degrees Celsius using the function:

[tex]\[ C(F) = \frac{5}{9}(F - 32) \][/tex]

What does [tex]\( C(F) \)[/tex] represent?

A. The temperature in degrees Fahrenheit converted to degrees Celsius.
B. The temperature in degrees Celsius converted to degrees Fahrenheit.
C. The temperature in degrees Fahrenheit converted to degrees Celsius.
D. The temperature in degrees Celsius converted to degrees Fahrenheit.



Answer :

To solve the given problem, we need to determine what the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] represents. This function is used to convert temperatures from one unit to another.

Step-by-step solution:

1. Identify the Function and Variables:
- The function given is [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex].
- Here, [tex]\( C(F) \)[/tex] is a function of [tex]\( F \)[/tex].

2. Interpret the Function:
- The function [tex]\( C(F) \)[/tex] takes an input [tex]\( F \)[/tex] and performs specific operations to convert [tex]\( F \)[/tex] to another value.
- Looking closely at the formula [tex]\( \frac{5}{9}(F - 32) \)[/tex], it follows the standard formula used to convert a temperature from degrees Fahrenheit to degrees Celsius.

3. Understand the Conversion Process:
- The term [tex]\( F - 32 \)[/tex] adjusts the temperature value to match the Celsius zero point corresponding to 32 degrees Fahrenheit.
- Multiplying by [tex]\( \frac{5}{9} \)[/tex] scales the temperature from Fahrenheit units to Celsius units.

4. Relating [tex]\( C(F) \)[/tex] and [tex]\( F \)[/tex]:
- [tex]\( F \)[/tex] represents the temperature in degrees Fahrenheit.
- [tex]\( C(F) \)[/tex] represents the converted temperature in degrees Celsius.

5. Determine the Correct Interpretation:
- We need to choose the option that accurately describes the conversion function [tex]\( C(F) \)[/tex].

Options Analysis:

- Option 1: The temperature of [tex]\( F \)[/tex] degrees Fahrenheit converted to degrees Celsius.
- This correctly states that the function [tex]\( C(F) \)[/tex] converts a temperature [tex]\( F \)[/tex] in Fahrenheit to a corresponding temperature in Celsius.

- Option 2: The temperature of [tex]\( F \)[/tex] degrees Celsius converted to degrees Fahrenheit.
- This is incorrect because [tex]\( F \)[/tex] is in degrees Fahrenheit, not Celsius.

- Option 3: The temperature of [tex]\( C \)[/tex] degrees Fahrenheit converted to degrees Celsius.
- This is incorrect as [tex]\( C \)[/tex] is the result in Celsius, not Fahrenheit.

- Option 4: The temperature of [tex]\( C \)[/tex] degrees Celsius converted to degrees Fahrenheit.
- This is also incorrect; [tex]\( C \)[/tex] is already in Celsius, and the function [tex]\( C(F) \)[/tex] is converting from Fahrenheit to Celsius, not the other way around.

Based on the above analysis, the correct interpretation of the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex] is:

The temperature of [tex]\( F \)[/tex] degrees Fahrenheit converted to degrees Celsius.

Thus, the correct choice is:

1. The temperature of [tex]\( F \)[/tex] degrees Fahrenheit converted to degrees Celsius.