Simplify the following expression:

[tex]\[2x^5 + 3x^3 - 5x^2 + x^2 + 7x + 1 + 7x^8 - 3x^3 - 4\][/tex]

A. [tex]\[5x^5 + 5x^2 + 7x - 3\][/tex]

B. [tex]\[9x^5 - 4x^2 + 7x + 5\][/tex]

C. [tex]\[9x^5 + 6x^2 + 7x + 3\][/tex]

D. [tex]\[9x^5 - 4x^2 + 7x - 3\][/tex]



Answer :

To simplify the given expression, [tex]\(2 x^5 + 3 x^3 - 5 x^2 + x^2 + 7 x + 1 + 7 x^8 - 3 x^3 - 4\)[/tex], follow these steps:

1. Identify and group like terms.
Let's write down the given expression and group the terms with the same powers of [tex]\(x\)[/tex]:

[tex]\[ 2 x^5 + 3 x^3 - 5 x^2 + x^2 + 7 x + 1 + 7 x^8 - 3 x^3 - 4 \][/tex]

Grouping the terms:
- [tex]\(x^8\)[/tex] terms: [tex]\(7 x^8\)[/tex]
- [tex]\(x^5\)[/tex] terms: [tex]\(2 x^5\)[/tex]
- [tex]\(x^3\)[/tex] terms: [tex]\(3 x^3 - 3 x^3\)[/tex]
- [tex]\(x^2\)[/tex] terms: [tex]\(-5 x^2 + x^2\)[/tex]
- [tex]\(x\)[/tex] terms: [tex]\(7 x\)[/tex]
- Constant terms: [tex]\(1 - 4\)[/tex]

2. Simplify each group of like terms.

- For the [tex]\(x^8\)[/tex] terms:
[tex]\[ 7 x^8 \][/tex]

- For the [tex]\(x^5\)[/tex] terms:
[tex]\[ 2 x^5 \][/tex]

- For the [tex]\(x^3\)[/tex] terms:
[tex]\[ 3 x^3 - 3 x^3 = 0 \][/tex]

- For the [tex]\(x^2\)[/tex] terms:
[tex]\[ -5 x^2 + x^2 = -4 x^2 \][/tex]

- For the [tex]\(x\)[/tex] terms:
[tex]\[ 7 x \][/tex]

- For the constant terms:
[tex]\[ 1 - 4 = -3 \][/tex]

3. Combine all the simplified terms.

Summing them up, we have:

[tex]\[ 7 x^8 + 2 x^5 - 4 x^2 + 7 x - 3 \][/tex]

Thus, the simplified expression is:

[tex]\[ 7 x^8 + 2 x^5 - 4 x^2 + 7 x - 3 \][/tex]

Now, let's match this with the given choices:
- A. [tex]\(5 x^5+5 x^2+7 x-3\)[/tex]
- B. [tex]\(9 x^5 - 4 x^2 + 7 x + 5\)[/tex]
- C. [tex]\(9 x^5 + 6 x^2 + 7 x + 3\)[/tex]
- D. [tex]\(9 x^5 - 4 x^2 + 7 x - 3\)[/tex]

None of the options directly match our simplified expression. Therefore, the correct answer is not provided in the given choices.