Add:

[tex]\[
\begin{array}{r}
6x^2 - 5x + 3 \\
+ \quad 3x^2 + 7x - 8 \\
\hline
\end{array}
\][/tex]

A. [tex]\( 9x^2 + 2x + 11 \)[/tex]

B. [tex]\( 9x^2 - 2x + 5 \)[/tex]

C. [tex]\( 9x^2 + 2x - 5 \)[/tex]

D. [tex]\( 9x^2 + 12x - 5 \)[/tex]



Answer :

To add the polynomials [tex]\(6x^2 - 5x + 3\)[/tex] and [tex]\(3x^2 + 7x - 8\)[/tex], we need to combine the coefficients of like terms. Let's break it down step-by-step:

1. Identify the like terms:
- The terms with [tex]\(x^2\)[/tex] are [tex]\(6x^2\)[/tex] and [tex]\(3x^2\)[/tex].
- The terms with [tex]\(x\)[/tex] are [tex]\(-5x\)[/tex] and [tex]\(7x\)[/tex].
- The constant terms are [tex]\(3\)[/tex] and [tex]\(-8\)[/tex].

2. Add the coefficients of the [tex]\(x^2\)[/tex] terms:
[tex]\[ 6x^2 + 3x^2 = 9x^2 \][/tex]

3. Add the coefficients of the [tex]\(x\)[/tex] terms:
[tex]\[ -5x + 7x = 2x \][/tex]

4. Add the constant terms:
[tex]\[ 3 + (-8) = -5 \][/tex]

5. Write the resulting polynomial:
[tex]\[ 9x^2 + 2x - 5 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{9x^2 + 2x - 5} \][/tex]

Thus, the correct option is C.