Choose the correct simplification of the expression [tex]\((5xy^5)^2(y^3)^4\)[/tex].

A. [tex]\(25x^2y^{22}\)[/tex]
B. [tex]\(10x^2y^{22}\)[/tex]
C. [tex]\(25x^3y^{14}\)[/tex]
D. [tex]\(10x^3y^{14}\)[/tex]



Answer :

To simplify the given expression [tex]\(\left(5 x y^5\right)^2\left(y^3\right)^4\)[/tex], we can follow these steps:

1. Simplify [tex]\(\left(5 x y^5\right)^2\)[/tex]:

Raise [tex]\(5 x y^5\)[/tex] to the power of 2. This means we need to square each of the factors inside the parentheses.

[tex]\[ \left(5 x y^5\right)^2 = (5)^2 \cdot (x)^2 \cdot (y^5)^2 \][/tex]

Calculate each part separately:
[tex]\[ (5)^2 = 25 \][/tex]
[tex]\[ (x)^2 = x^2 \][/tex]
[tex]\[ (y^5)^2 = y^{5 \cdot 2} = y^{10} \][/tex]

Combine these results:
[tex]\[ \left(5 x y^5\right)^2 = 25 x^2 y^{10} \][/tex]

2. Simplify [tex]\(\left(y^3\right)^4\)[/tex]:

Raise [tex]\(y^3\)[/tex] to the power of 4. Multiply the exponent inside the parentheses by the exponent outside.

[tex]\[ \left(y^3\right)^4 = y^{3 \cdot 4} = y^{12} \][/tex]

3. Multiply the simplified parts:

Combine the simplified expressions [tex]\(\left(5 x y^5\right)^2 = 25 x^2 y^{10}\)[/tex] and [tex]\(\left(y^3\right)^4 = y^{12}\)[/tex].

[tex]\[ 25 x^2 y^{10} \cdot y^{12} \][/tex]

Since the bases of the [tex]\(y\)[/tex] terms are the same, we add the exponents:

[tex]\[ 25 x^2 y^{10 + 12} = 25 x^2 y^{22} \][/tex]

Therefore, the correct simplification of the expression [tex]\(\left(5 x y^5\right)^2\left(y^3\right)^4\)[/tex] is:

[tex]\[ \boxed{25 x^2 y^{22}} \][/tex]