Simplify the expression:

[tex]\[ 2x^2\left(-4x^4 + 6x^3 - 2x^2\right) \][/tex]

A. [tex]\(-8x^8 + 12x^5 - 4x^4\)[/tex]

B. [tex]\(-8x^6 + 12x^5 - 4x^4\)[/tex]

C. [tex]\(8x^6 + 12x^3 + 4x^4\)[/tex]

D. [tex]\(-8x^8 + 12x^6 - 4x^4\)[/tex]



Answer :

To simplify the expression [tex]\(2 x^2\left(-4 x^4 + 6 x^3 - 2 x^2\right)\)[/tex], let's distribute [tex]\(2 x^2\)[/tex] through the terms inside the parentheses step by step.

1. Start with the given expression:
[tex]\[ 2 x^2 (-4 x^4 + 6 x^3 - 2 x^2) \][/tex]

2. Distribute [tex]\(2 x^2\)[/tex] to each term inside the parentheses:

- First term: [tex]\(2 x^2 \cdot (-4 x^4)\)[/tex]
[tex]\[ 2 x^2 \cdot (-4 x^4) = -8 x^{2 + 4} = -8 x^6 \][/tex]

- Second term: [tex]\(2 x^2 \cdot 6 x^3\)[/tex]
[tex]\[ 2 x^2 \cdot 6 x^3 = 12 x^{2 + 3} = 12 x^5 \][/tex]

- Third term: [tex]\(2 x^2 \cdot (-2 x^2)\)[/tex]
[tex]\[ 2 x^2 \cdot (-2 x^2) = -4 x^{2 + 2} = -4 x^4 \][/tex]

3. Combine the results of these individual multiplications:
[tex]\[ -8 x^6 + 12 x^5 - 4 x^4 \][/tex]

Therefore, the simplified form of the expression [tex]\(2 x^2 (-4 x^4 + 6 x^3 - 2 x^2)\)[/tex] is:
[tex]\[ -8 x^6 + 12 x^5 - 4 x^4 \][/tex]

Among the given options, this result matches:
[tex]\[ -8 x^6 + 12 x^5 - 4 x^4 \][/tex]

Thus, the correct choice is:
[tex]\[ \boxed{-8 x^6 + 12 x^5 - 4 x^4} \][/tex]