Answer :

Certainly! Let's solve the given equation step by step.

Given equation:
[tex]\[ \frac{3}{2x^2} = \frac{1}{x} - \frac{1}{8} \][/tex]

Step 1: Eliminate fractions by finding a common denominator.

The least common multiple (LCM) of [tex]\( 2x^2 \)[/tex], [tex]\( x \)[/tex], and [tex]\( 8 \)[/tex] is [tex]\( 8x^2 \)[/tex].

Multiply both sides of the equation by [tex]\( 8x^2 \)[/tex] to clear the fractions:

[tex]\[ 8x^2 \cdot \frac{3}{2x^2} = 8x^2 \cdot \left( \frac{1}{x} - \frac{1}{8} \right) \][/tex]

Step 2: Simplify the equation after multiplying by [tex]\( 8x^2 \)[/tex]:

[tex]\[ 8x^2 \cdot \frac{3}{2x^2} = 8x^2 \cdot \frac{1}{x} - 8x^2 \cdot \frac{1}{8} \][/tex]

This reduces to:

[tex]\[ 4 \cdot 3 = 8x - x^2 \][/tex]

So, we get:

[tex]\[ 12 = 8x - x^2 \][/tex]

Step 3: Rearrange the equation to form a standard quadratic equation:

Move all terms to one side to set the equation to 0,

[tex]\[ x^2 - 8x + 12 = 0 \][/tex]

Step 4: Solve the quadratic equation using the quadratic formula:

The quadratic formula is:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

For the equation [tex]\( x^2 - 8x + 12 = 0 \)[/tex], the coefficients are:
[tex]\( a = 1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = 12 \)[/tex].

Substitute these values into the quadratic formula:

[tex]\[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \cdot 1 \cdot 12}}{2 \cdot 1} \][/tex]

[tex]\[ x = \frac{8 \pm \sqrt{64 - 48}}{2} \][/tex]

[tex]\[ x = \frac{8 \pm \sqrt{16}}{2} \][/tex]

[tex]\[ x = \frac{8 \pm 4}{2} \][/tex]

So the solutions are:

[tex]\[ x = \frac{8 + 4}{2} = \frac{12}{2} = 6 \][/tex]

and

[tex]\[ x = \frac{8 - 4}{2} = \frac{4}{2} = 2 \][/tex]

Therefore, the solutions to the equation [tex]\( \frac{3}{2x^2} = \frac{1}{x} - \frac{1}{8} \)[/tex] are:

[tex]\[ \boxed{2 \text{ and } 6} \][/tex]