Simplify [tex]\((2g - 1)(3g^2 - 2g + 4)\)[/tex]:

A. [tex]\(6g^3 + g^2 + 6g - 4\)[/tex]
B. [tex]\(6g^3 - 3g^2 + 8g - 4\)[/tex]
C. [tex]\(6g^3 + g^2 + 10g - 4\)[/tex]
D. [tex]\(6g^3 - 7g^2 + 10g - 4\)[/tex]



Answer :

To simplify the expression [tex]\((2g - 1)(3g^2 - 2g + 4)\)[/tex], we need to use the distributive property, also known as the FOIL method for multiplying binomials, to expand the product of these polynomials. Let’s go through the steps in detail:

1. Distribute each term in the first polynomial to each term in the second polynomial:

[tex]\[ (2g - 1)(3g^2 - 2g + 4) \][/tex]

This can be broken down into:

[tex]\[ 2g \cdot (3g^2 - 2g + 4) - 1 \cdot (3g^2 - 2g + 4) \][/tex]

2. Multiply [tex]\(2g\)[/tex] by each term in the second polynomial:

[tex]\[ 2g \cdot 3g^2 = 6g^3 \][/tex]

[tex]\[ 2g \cdot (-2g) = -4g^2 \][/tex]

[tex]\[ 2g \cdot 4 = 8g \][/tex]

So, distributing [tex]\(2g\)[/tex] gives us:

[tex]\[ 6g^3 - 4g^2 + 8g \][/tex]

3. Multiply [tex]\(-1\)[/tex] by each term in the second polynomial:

[tex]\[ -1 \cdot 3g^2 = -3g^2 \][/tex]

[tex]\[ -1 \cdot (-2g) = 2g \][/tex]

[tex]\[ -1 \cdot 4 = -4 \][/tex]

So, distributing [tex]\(-1\)[/tex] gives us:

[tex]\[ -3g^2 + 2g - 4 \][/tex]

4. Combine the results from steps 2 and 3:

Adding the results together, we have:

[tex]\[ (6g^3 - 4g^2 + 8g) + (-3g^2 + 2g - 4) \][/tex]

5. Combine like terms:

Group the like terms:

[tex]\[ 6g^3 + (-4g^2 - 3g^2) + (8g + 2g) - 4 \][/tex]

Simplify each group:

[tex]\[ 6g^3 - 7g^2 + 10g - 4 \][/tex]

Therefore, the simplified form of the expression [tex]\((2g - 1)(3g^2 - 2g + 4)\)[/tex] is:

[tex]\[ 6g^3 - 7g^2 + 10g - 4 \][/tex]

Upon comparing this with the given options:
- [tex]\(6g^3 + g^2 + 6g - 4\)[/tex]
- [tex]\(6g^3 - 3g^2 + 8g - 4\)[/tex]
- [tex]\(6g^3 + g^2 + 10g - 4\)[/tex]
- [tex]\(6g^3 - 7g^2 + 10g - 4\)[/tex]

The correct simplified expression is:

[tex]\(\boxed{6g^3 - 7g^2 + 10g - 4}\)[/tex]