Match each expression on the left with its equivalent on the right. Some answer choices on the right will not be used.

[tex]\[
\begin{array}{ll}
150 \times 10 & 15 \\
150,000 \div 10 & 150 \\
15 \times 10,000 & 1,500 \\
1,500 \div 100 & 15,000 \\
& 150,000 \\
& 1,500,000 \\
\end{array}
\][/tex]



Answer :

To solve the problem, we need to match each expression on the left side with its equivalent value on the right side. Let's examine each expression step-by-step and match it to the corresponding value.

1. Expression: [tex]\(150 \times 10\)[/tex]
[tex]\[ 150 \times 10 = 1500 \][/tex]
Therefore, [tex]\(150 \times 10\)[/tex] matches with [tex]\(1500\)[/tex].

2. Expression: [tex]\(150,000 \div 10\)[/tex]
[tex]\[ 150,000 \div 10 = 15000 \][/tex]
Therefore, [tex]\(150,000 \div 10\)[/tex] matches with [tex]\(15000\)[/tex].

3. Expression: [tex]\(15 \times 10,000\)[/tex]
[tex]\[ 15 \times 10,000 = 150000 \][/tex]
Therefore, [tex]\(15 \times 10,000\)[/tex] matches with [tex]\(150000\)[/tex].

4. Expression: [tex]\(1,500 \div 100\)[/tex]
[tex]\[ 1,500 \div 100 = 15 \][/tex]
Therefore, [tex]\(1,500 \div 100\)[/tex] matches with [tex]\(15\)[/tex].

Now that we've matched each expression:

1. [tex]\(150 \times 10 = 1500\)[/tex]
2. [tex]\(150000 \div 10 = 15000\)[/tex]
3. [tex]\(15 \times 10000 = 150000\)[/tex]
4. [tex]\(1500 \div 100 = 15\)[/tex]

Let's map these matches correctly:

- [tex]\(150 \times 10\)[/tex] -> [tex]\(1500\)[/tex]
- [tex]\(150,000 \div 10\)[/tex] -> [tex]\(15000\)[/tex]
- [tex]\(15 \times 10,000\)[/tex] -> [tex]\(150000\)[/tex]
- [tex]\(1,500 \div 100\)[/tex] -> [tex]\(15\)[/tex]

The unused answer choices are [tex]\( \(1,500,000\)[/tex] and [tex]\(150\)[/tex] (though [tex]\(150\)[/tex] was directed at 1,500/100 initially). Thus, the solution is:

- [tex]\(150 \times 10 = 1500\)[/tex]
- [tex]\(150,000 \div 10 = 15,000\)[/tex]
- [tex]\(15 \times 10,000 = 150,000\)[/tex]
- [tex]\(1,500 \div 100 = 15\)[/tex]