What is the cube root of [tex]\(512 m^{12} n^{15}\)[/tex]?

A. [tex]\( -16 m^4 n^5 \)[/tex]

B. [tex]\( -8 m^5 n^4 \)[/tex]

C. [tex]\( 8 m^4 n^5 \)[/tex]

D. [tex]\( 16 m^5 n^4 \)[/tex]



Answer :

To find the cube root of [tex]\( 512 m^{12} n^{15} \)[/tex], let's break down each part of the expression.

1. Cube root of the coefficient [tex]\( 512 \)[/tex]:
[tex]\[ \sqrt[3]{512} \][/tex]
We know that [tex]\( 512 \)[/tex] is [tex]\( 8^3 \)[/tex], so:
[tex]\[ \sqrt[3]{512} = 8 \][/tex]

2. Cube root of [tex]\( m^{12} \)[/tex]:
[tex]\[ \sqrt[3]{m^{12}} = m^{12/3} = m^4 \][/tex]

3. Cube root of [tex]\( n^{15} \)[/tex]:
[tex]\[ \sqrt[3]{n^{15}} = n^{15/3} = n^5 \][/tex]

Combining these results, we get:
[tex]\[ \sqrt[3]{512 m^{12} n^{15}} = 8 m^4 n^5 \][/tex]

So, the cube root of [tex]\( 512 m^{12} n^{15} \)[/tex] is:
[tex]\[ 8 m^4 n^5 \][/tex]

Therefore, the correct choice from the given options is:
[tex]\[ \boxed{8 m^4 n^5} \][/tex]