To find the value of [tex]\(x\)[/tex] in the equation [tex]\(3x - \frac{1}{9}y = 18\)[/tex] when [tex]\(y = 27\)[/tex], follow these steps:
1. Substitute the given value of [tex]\(y\)[/tex] into the equation:
[tex]\[
3x - \frac{1}{9} \cdot 27 = 18
\][/tex]
2. Simplify the equation:
[tex]\[
3x - 3 = 18
\][/tex]
3. Add 3 to both sides of the equation to isolate the term with [tex]\(x\)[/tex]:
[tex]\[
3x = 18 + 3
\][/tex]
[tex]\[
3x = 21
\][/tex]
4. Divide both sides of the equation by 3 to solve for [tex]\(x\)[/tex]:
[tex]\[
x = \frac{21}{3}
\][/tex]
[tex]\[
x = 7
\][/tex]
Therefore, the value of [tex]\(x\)[/tex] is 7. So, the correct answer is:
[tex]\[
\boxed{7}
\][/tex]