What is the value of [tex]\( x \)[/tex] in the equation [tex]\( 3x - \frac{1}{9}y = 18 \)[/tex], when [tex]\( y = 27 \)[/tex]?

A. 5
B. 7
C. 45
D. 63



Answer :

To find the value of [tex]\(x\)[/tex] in the equation [tex]\(3x - \frac{1}{9}y = 18\)[/tex] when [tex]\(y = 27\)[/tex], follow these steps:

1. Substitute the given value of [tex]\(y\)[/tex] into the equation:

[tex]\[ 3x - \frac{1}{9} \cdot 27 = 18 \][/tex]

2. Simplify the equation:

[tex]\[ 3x - 3 = 18 \][/tex]

3. Add 3 to both sides of the equation to isolate the term with [tex]\(x\)[/tex]:

[tex]\[ 3x = 18 + 3 \][/tex]
[tex]\[ 3x = 21 \][/tex]

4. Divide both sides of the equation by 3 to solve for [tex]\(x\)[/tex]:

[tex]\[ x = \frac{21}{3} \][/tex]
[tex]\[ x = 7 \][/tex]

Therefore, the value of [tex]\(x\)[/tex] is 7. So, the correct answer is:

[tex]\[ \boxed{7} \][/tex]