Answer :

Let's simplify each expression step by step.

### Expression 6:

[tex]\[ (2 + a^2 - 2a - a^3)(a + 1) \][/tex]

First, we distribute each term inside the first parenthesis by the term [tex]\(a + 1\)[/tex]:

[tex]\[ = (2 + a^2 - 2a - a^3) \times a + (2 + a^2 - 2a - a^3) \times 1 \][/tex]

Distributing [tex]\(a\)[/tex] to each term inside the first parenthesis:

[tex]\[ = 2a + a^3 - 2a^2 - a^4 \][/tex]

Next, distributing 1 to each term inside the parenthesis:

[tex]\[ = 2 + a^2 - 2a - a^3 \][/tex]

Now, add these two results together:

[tex]\[ 2a + a^3 - 2a^2 - a^4 + 2 + a^2 - 2a - a^3 \][/tex]

Combine like terms:

[tex]\[ = -a^4 + (a^3 - a^3) + (-2a^2 + a^2) + (2a - 2a) + 2 \][/tex]

[tex]\[ = -a^4 - a^2 + 2 \][/tex]

So, the simplified form is:

[tex]\[ (2 + a^2 - 2a - a^3)(a + 1) = -a^4 - a^2 + 2 \][/tex]

### Expression 7:

[tex]\[ \left(\frac{1}{2} x^2 - 2x + \frac{1}{4}\right)\left(-\frac{1}{2}\right) \][/tex]

Distribute [tex]\( -\frac{1}{2} \)[/tex] to each term inside the parenthesis:

[tex]\[ = \left(\frac{1}{2} x^2 \times -\frac{1}{2}\right) + \left(-2x \times -\frac{1}{2}\right) + \left(\frac{1}{4} \times -\frac{1}{2}\right) \][/tex]

Simplify each term:

[tex]\[ = -\frac{1}{4} x^2 + x - \frac{1}{8} \][/tex]

So, the simplified form is:

[tex]\[ \left(\frac{1}{2} x^2 - 2x + \frac{1}{4}\right)\left(-\frac{1}{2}\right) = -\frac{1}{4} x^2 + x - \frac{1}{8} \][/tex]

Therefore, the final answers are:

6. [tex]\(\left(2 + a^2 - 2a - a^3\right)(a+1) = -a^4 - a^2 + 2\)[/tex]
7. [tex]\(\left(\frac{1}{2} x^2 - 2 x + \frac{1}{4}\right)\left(- \frac{1}{2}\right) = -\frac{1}{4} x^2 + x - \frac{1}{8}\)[/tex]