Answer :
To convert the temperature from degrees Fahrenheit to degrees Celsius, Kareem uses the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. Here’s the step-by-step solution:
1. Identify the given Fahrenheit temperature:
[tex]\( F = 76.1 \)[/tex] degrees Fahrenheit.
2. Substitute [tex]\( F = 76.1 \)[/tex] into the conversion function:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the expression inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Multiply by the fraction [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
5. Compute the multiplication:
[tex]\[ C(76.1) \approx 24.5 \][/tex]
So, [tex]\( C(76.1) \)[/tex], which equals approximately 24.5, represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Therefore, the correct interpretation is:
[tex]\[ \text{the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius} \][/tex]
1. Identify the given Fahrenheit temperature:
[tex]\( F = 76.1 \)[/tex] degrees Fahrenheit.
2. Substitute [tex]\( F = 76.1 \)[/tex] into the conversion function:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]
3. Calculate the expression inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]
4. Multiply by the fraction [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]
5. Compute the multiplication:
[tex]\[ C(76.1) \approx 24.5 \][/tex]
So, [tex]\( C(76.1) \)[/tex], which equals approximately 24.5, represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.
Therefore, the correct interpretation is:
[tex]\[ \text{the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius} \][/tex]