On his first day of school, Kareem found the high temperature to be [tex]\(76.1^{\circ}\)[/tex] Fahrenheit. He plans to use the function [tex]\(C(F)=\frac{5}{9}(F-32)\)[/tex] to convert this temperature to degrees Celsius.

What does [tex]\(C(76.1)\)[/tex] represent?

A. The temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
B. The temperature of 76.1 degrees Celsius converted to degrees Fahrenheit
C. The amount of time it takes for a temperature of 76.1 degrees Fahrenheit to be converted to 32 degrees Celsius
D. The amount of time it takes for a temperature of 76.1 degrees Celsius to be converted to 32 degrees Fahrenheit



Answer :

To convert the temperature from degrees Fahrenheit to degrees Celsius, Kareem uses the function [tex]\( C(F) = \frac{5}{9}(F - 32) \)[/tex]. Here’s the step-by-step solution:

1. Identify the given Fahrenheit temperature:
[tex]\( F = 76.1 \)[/tex] degrees Fahrenheit.

2. Substitute [tex]\( F = 76.1 \)[/tex] into the conversion function:
[tex]\[ C(76.1) = \frac{5}{9}(76.1 - 32) \][/tex]

3. Calculate the expression inside the parentheses:
[tex]\[ 76.1 - 32 = 44.1 \][/tex]

4. Multiply by the fraction [tex]\(\frac{5}{9}\)[/tex]:
[tex]\[ C(76.1) = \frac{5}{9} \times 44.1 \][/tex]

5. Compute the multiplication:
[tex]\[ C(76.1) \approx 24.5 \][/tex]

So, [tex]\( C(76.1) \)[/tex], which equals approximately 24.5, represents the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius.

Therefore, the correct interpretation is:
[tex]\[ \text{the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius} \][/tex]