What is the value of [tex]\(\lim_{n \rightarrow \infty} S_n\)[/tex] if [tex]\(S_n=\sum_{k=1}^n\left[\frac{24}{n^3} \cdot k^2 + \frac{12}{n^2} \cdot k + \frac{15}{n}\right]\)[/tex]?

Hint: Use the summation formulas from the "Area Under a Curve" lesson.

Answer: [tex]\(\square\)[/tex]



Answer :

To solve the problem, we need to find the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] where [tex]\(S_n\)[/tex] is given by:
[tex]\[S_n = \sum_{k=1}^n \left[ \frac{24}{n^3} k^2 + \frac{12}{n^2} k + \frac{15}{n} \right]\][/tex]

Let's analyze the sum term-by-term.

### Step-by-Step Breakdown:

1. Separate the Sum:
[tex]\[S_n = \sum_{k=1}^n \frac{24}{n^3} k^2 + \sum_{k=1}^n \frac{12}{n^2} k + \sum_{k=1}^n \frac{15}{n}\][/tex]

2. Simplify Each Sum Separately:

#### First Term: [tex]\(\sum_{k=1}^n \frac{24}{n^3} k^2\)[/tex]
[tex]\[\sum_{k=1}^n \frac{24}{n^3} k^2 = \frac{24}{n^3} \sum_{k=1}^n k^2\][/tex]

The formula for the sum of squares of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}\][/tex]

Substituting this in:
[tex]\[\frac{24}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{24}{6} \cdot \frac{(n+1)(2n+1)}{n^2} = 4 \cdot \frac{(n+1)(2n+1)}{n^2}\][/tex]

Simplifying further:
[tex]\[\frac{4(n+1)(2n+1)}{n^2} = 4 \cdot \left(\frac{(2n^2 + 3n + 1)}{n^2}\right) = 4 \cdot \left(2 + \frac{3}{n} + \frac{1}{n^2}\right)\][/tex]

As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{3}{n} \rightarrow 0\)[/tex] and [tex]\(\frac{1}{n^2} \rightarrow 0\)[/tex]:
[tex]\[= 4 \cdot 2 = 8\][/tex]

#### Second Term: [tex]\(\sum_{k=1}^n \frac{12}{n^2} k\)[/tex]
[tex]\[\sum_{k=1}^n \frac{12}{n^2} k = \frac{12}{n^2} \sum_{k=1}^n k\][/tex]

The formula for the sum of the first [tex]\(n\)[/tex] natural numbers is:
[tex]\[\sum_{k=1}^n k = \frac{n(n+1)}{2}\][/tex]

Substituting this in:
[tex]\[\frac{12}{n^2} \cdot \frac{n(n+1)}{2} = \frac{12}{2} \cdot \frac{(n+1)}{n} = 6 \cdot \left(\frac{n+1}{n}\right)\][/tex]

Simplifying further:
[tex]\[6 \cdot \left(1 + \frac{1}{n}\right)\][/tex]

As [tex]\(n \rightarrow \infty\)[/tex], [tex]\(\frac{1}{n} \rightarrow 0\)[/tex]:
[tex]\[= 6 \cdot 1 = 6\][/tex]

#### Third Term: [tex]\(\sum_{k=1}^n \frac{15}{n}\)[/tex]
[tex]\[\sum_{k=1}^n \frac{15}{n} = \frac{15}{n} \sum_{k=1}^n 1 = \frac{15}{n} \cdot n = 15\][/tex]

3. Combine the Results:
Adding up the simplified limits, we get:
[tex]\[ \lim_{n \rightarrow \infty} S_n = 8 + 6 + 15 = 29 \][/tex]

Therefore, the value of [tex]\(\lim _{n \rightarrow \infty} S_n\)[/tex] is:
[tex]\[ \boxed{29} \][/tex]

Other Questions