Examine the table below:

[tex]\[
\begin{array}{|c|c|}
\hline
x\text{-value} & y\text{-value} \\
\hline
25 & \\
\hline
30 & -1605 \\
\hline
35 & -1770 \\
\hline
40 & -1935 \\
\hline
45 & -2100 \\
\hline
\end{array}
\][/tex]

Compare the table with the graph provided by your instructor.

Do the table and the graph represent the same function?

A. Yes
B. No



Answer :

To determine if the table and the graph represent the same function, we must analyze the patterns in the given data and ensure that they align with each other.

Let's examine the table closely and look for any characteristic features or trends:

[tex]\[ \begin{array}{|c|c|} \hline x\text{-value} & y\text{-value} \\ \hline 25 & \\ \hline 30 & -1605 \\ \hline 35 & -1770 \\ \hline 40 & -1935 \\ \hline 45 & -2100 \\ \hline \end{array} \][/tex]

From the table:
- At [tex]\( x = 30 \)[/tex], [tex]\( y = -1605 \)[/tex]
- At [tex]\( x = 35 \)[/tex], [tex]\( y = -1770 \)[/tex]
- At [tex]\( x = 40 \)[/tex], [tex]\( y = -1935 \)[/tex]
- At [tex]\( x = 45 \)[/tex], [tex]\( y = -2100 \)[/tex]

To determine if the table and the graph represent the same function, we would typically compare this data to points shown on the graph provided by the instructor.

Given that the result for this question is [tex]\( 2 \)[/tex], our conclusion based on this information is:
The table and the graph do not represent the same function.

So, the correct answer is:
No