Consider the following absolute value inequality:

[tex]\[ 3|z+3| \geq 9 \][/tex]

Solve the inequality and express your answer in interval notation.



Answer :

To solve the absolute value inequality [tex]\(3|z + 3| \geq 9\)[/tex], let's go through the problem step-by-step.

### Step 1: Isolate the absolute value expression

First, we will isolate the absolute value term on one side of the inequality:

[tex]\[ 3 |z + 3| \geq 9 \][/tex]

Divide both sides by 3 to simplify:

[tex]\[ |z + 3| \geq 3 \][/tex]

### Step 2: Break down the absolute value inequality

We need to consider the definition of absolute value to break this into two separate inequalities. By definition, [tex]\(|A| \geq B\)[/tex] implies:

[tex]\[ A \geq B \quad \text{or} \quad A \leq -B \][/tex]

Here, [tex]\(A\)[/tex] is [tex]\(z + 3\)[/tex] and [tex]\(B\)[/tex] is 3. Therefore, the inequality [tex]\(|z + 3| \geq 3\)[/tex] translates to:

[tex]\[ z + 3 \geq 3 \quad \text{or} \quad z + 3 \leq -3 \][/tex]

### Step 3: Solve each inequality separately

#### For [tex]\(z + 3 \geq 3\)[/tex]:

Subtract 3 from both sides:

[tex]\[ z \geq 0 \][/tex]

#### For [tex]\(z + 3 \leq -3\)[/tex]:

Subtract 3 from both sides:

[tex]\[ z \leq -6 \][/tex]

### Step 4: Combine the solutions

Combining both parts of our solution, we have:

[tex]\[ z \geq 0 \quad \text{or} \quad z \leq -6 \][/tex]

### Step 5: Express the solution in interval notation

To write the solution in interval notation, we combine the inequalities into intervals:

[tex]\[ z \in (-\infty, -6] \cup [0, \infty) \][/tex]

So, the solution to the inequality [tex]\(3|z + 3| \geq 9\)[/tex] expressed in interval notation is:

[tex]\[ (-\infty, -6] \cup [0, \infty) \][/tex]

This represents all values of [tex]\(z\)[/tex] that satisfy the given inequality.