Answer :

To solve the quadratic equation [tex]\(2x^2 + x - 4 = 0\)[/tex], we will use the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Here, the coefficients are:
- [tex]\( a = 2 \)[/tex]
- [tex]\( b = 1 \)[/tex]
- [tex]\( c = -4 \)[/tex]

Firstly, we need to calculate the discriminant, which is given by [tex]\( b^2 - 4ac \)[/tex]:

[tex]\[ \text{Discriminant} = b^2 - 4ac \][/tex]

Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

[tex]\[ \text{Discriminant} = 1^2 - 4 \cdot 2 \cdot (-4) \][/tex]

[tex]\[ \text{Discriminant} = 1 + 32 \][/tex]

[tex]\[ \text{Discriminant} = 33 \][/tex]

The discriminant is 33.

Now, we apply these values into the quadratic formula to find the two solutions for [tex]\( x \)[/tex]:

[tex]\[ x = \frac{-1 \pm \sqrt{33}}{2 \cdot 2} \][/tex]

[tex]\[ x = \frac{-1 \pm \sqrt{33}}{4} \][/tex]

This yields two solutions:

[tex]\[ x_1 = \frac{-1 + \sqrt{33}}{4} \][/tex]

[tex]\[ x_2 = \frac{-1 - \sqrt{33}}{4} \][/tex]

Approximating the values:

[tex]\[ x_1 \approx 1.186 \][/tex]

[tex]\[ x_2 \approx -1.686 \][/tex]

So, the solutions to the quadratic equation [tex]\(2x^2 + x - 4 = 0\)[/tex] are approximately:

[tex]\[ x_1 \approx 1.186 \][/tex]
[tex]\[ x_2 \approx -1.686 \][/tex]