Answer :
Pour montrer que [tex]\( A(x) = (2x - 1)(4x - 5) \)[/tex], nous devons simplifier l'expression donnée pour [tex]\( A(x) \)[/tex] et ensuite factoriser le résultat.
L'expression donnée est :
[tex]\[ A(x) = (2x - 1)^2 - (1 - 2x)(3x - 1) - (x + 3)(2x - 1) \][/tex]
Commençons par développer chaque terme de cette expression.
### Étape 1: Développer chaque terme de l'expression
1. Premier terme : [tex]\((2x - 1)^2\)[/tex]
[tex]\[ (2x - 1)^2 = (2x - 1)(2x - 1) = 4x^2 - 4x + 1 \][/tex]
2. Deuxième terme : [tex]\(-(1 - 2x)(3x - 1)\)[/tex]
[tex]\[ (1 - 2x)(3x - 1) = (1)(3x) + (1)(-1) + (-2x)(3x) + (-2x)(-1) \][/tex]
[tex]\[ = 3x - 1 - 6x^2 + 2x \][/tex]
[tex]\[ = -6x^2 + 5x - 1 \][/tex]
Maintenant, en multipliant par [tex]\(-1\)[/tex]:
[tex]\[ - (1 - 2x)(3x - 1) = 6x^2 - 5x + 1 \][/tex]
3. Troisième terme : [tex]\(-(x + 3)(2x - 1)\)[/tex]
[tex]\[ (x + 3)(2x - 1) = (x)(2x) + (x)(-1) + (3)(2x) + (3)(-1) \][/tex]
[tex]\[ = 2x^2 - x + 6x - 3 \][/tex]
[tex]\[ = 2x^2 + 5x - 3 \][/tex]
Maintenant, en multipliant par [tex]\(-1\)[/tex]:
[tex]\[ - (x + 3)(2x - 1) = -2x^2 - 5x + 3 \][/tex]
### Étape 2: Combiner tous les termes
Maintenant, combinons tous les termes :
[tex]\[ A(x) = 4x^2 - 4x + 1 + 6x^2 - 5x + 1 - 2x^2 - 5x + 3 \][/tex]
### Étape 3: Simplifier
Simplifions l'expression en combinant les termes similaires :
[tex]\[ A(x) = (4x^2 + 6x^2 - 2x^2) + (-4x - 5x - 5x) + (1 + 1 + 3) \][/tex]
[tex]\[ A(x) = 8x^2 - 14x + 5 \][/tex]
Nous avons simplifié [tex]\( A(x) \)[/tex] en [tex]\( 8x^2 - 14x + 5 \)[/tex].
### Étape 4: Factoriser l'expression
Cherchons à factoriser l'expression [tex]\( 8x^2 - 14x + 5 \)[/tex]. La forme factorisée devrait être :
[tex]\[ A(x) = (2x - 1)(4x - 5) \][/tex]
### Vérification de la factorisation
Développons [tex]\( (2x - 1)(4x - 5) \)[/tex] pour vérifier :
[tex]\[ (2x - 1)(4x - 5) = (2x)(4x) + (2x)(-5) + (-1)(4x) + (-1)(-5) \][/tex]
[tex]\[ = 8x^2 - 10x - 4x + 5 \][/tex]
[tex]\[ = 8x^2 - 14x + 5 \][/tex]
Nous avons retrouvé notre expression simplifiée [tex]\( 8x^2 - 14x + 5 \)[/tex].
Ainsi, nous avons montré que :
[tex]\[ A(x) = (2x - 1)(4x - 5) \][/tex]
L'expression donnée est :
[tex]\[ A(x) = (2x - 1)^2 - (1 - 2x)(3x - 1) - (x + 3)(2x - 1) \][/tex]
Commençons par développer chaque terme de cette expression.
### Étape 1: Développer chaque terme de l'expression
1. Premier terme : [tex]\((2x - 1)^2\)[/tex]
[tex]\[ (2x - 1)^2 = (2x - 1)(2x - 1) = 4x^2 - 4x + 1 \][/tex]
2. Deuxième terme : [tex]\(-(1 - 2x)(3x - 1)\)[/tex]
[tex]\[ (1 - 2x)(3x - 1) = (1)(3x) + (1)(-1) + (-2x)(3x) + (-2x)(-1) \][/tex]
[tex]\[ = 3x - 1 - 6x^2 + 2x \][/tex]
[tex]\[ = -6x^2 + 5x - 1 \][/tex]
Maintenant, en multipliant par [tex]\(-1\)[/tex]:
[tex]\[ - (1 - 2x)(3x - 1) = 6x^2 - 5x + 1 \][/tex]
3. Troisième terme : [tex]\(-(x + 3)(2x - 1)\)[/tex]
[tex]\[ (x + 3)(2x - 1) = (x)(2x) + (x)(-1) + (3)(2x) + (3)(-1) \][/tex]
[tex]\[ = 2x^2 - x + 6x - 3 \][/tex]
[tex]\[ = 2x^2 + 5x - 3 \][/tex]
Maintenant, en multipliant par [tex]\(-1\)[/tex]:
[tex]\[ - (x + 3)(2x - 1) = -2x^2 - 5x + 3 \][/tex]
### Étape 2: Combiner tous les termes
Maintenant, combinons tous les termes :
[tex]\[ A(x) = 4x^2 - 4x + 1 + 6x^2 - 5x + 1 - 2x^2 - 5x + 3 \][/tex]
### Étape 3: Simplifier
Simplifions l'expression en combinant les termes similaires :
[tex]\[ A(x) = (4x^2 + 6x^2 - 2x^2) + (-4x - 5x - 5x) + (1 + 1 + 3) \][/tex]
[tex]\[ A(x) = 8x^2 - 14x + 5 \][/tex]
Nous avons simplifié [tex]\( A(x) \)[/tex] en [tex]\( 8x^2 - 14x + 5 \)[/tex].
### Étape 4: Factoriser l'expression
Cherchons à factoriser l'expression [tex]\( 8x^2 - 14x + 5 \)[/tex]. La forme factorisée devrait être :
[tex]\[ A(x) = (2x - 1)(4x - 5) \][/tex]
### Vérification de la factorisation
Développons [tex]\( (2x - 1)(4x - 5) \)[/tex] pour vérifier :
[tex]\[ (2x - 1)(4x - 5) = (2x)(4x) + (2x)(-5) + (-1)(4x) + (-1)(-5) \][/tex]
[tex]\[ = 8x^2 - 10x - 4x + 5 \][/tex]
[tex]\[ = 8x^2 - 14x + 5 \][/tex]
Nous avons retrouvé notre expression simplifiée [tex]\( 8x^2 - 14x + 5 \)[/tex].
Ainsi, nous avons montré que :
[tex]\[ A(x) = (2x - 1)(4x - 5) \][/tex]