What is the [tex]\( y \)[/tex]-intercept of the quadratic function [tex]\( f(x) = (x-8)(x+3) \)[/tex]?

A. [tex]\((8,0)\)[/tex]

B. [tex]\((0,3)\)[/tex]

C. [tex]\((0,-24)\)[/tex]

D. [tex]\((-5,0)\)[/tex]



Answer :

To find the [tex]\(y\)[/tex]-intercept of the quadratic function [tex]\(f(x) = (x-8)(x+3)\)[/tex], we need to determine the value of the function when [tex]\(x = 0\)[/tex]. The [tex]\(y\)[/tex]-intercept is the point on the graph where the function crosses the [tex]\(y\)[/tex]-axis, which corresponds to [tex]\(x = 0\)[/tex].

Here are the detailed steps to find the [tex]\(y\)[/tex]-intercept:

1. Start with the given quadratic function:
[tex]\[ f(x) = (x-8)(x+3) \][/tex]

2. Substitute [tex]\(x = 0\)[/tex] into the function:
[tex]\[ f(0) = (0-8)(0+3) \][/tex]

3. Simplify the expression inside the parentheses:
[tex]\[ f(0) = (-8)(3) \][/tex]

4. Multiply the two numbers:
[tex]\[ f(0) = -24 \][/tex]

So, the [tex]\(y\)[/tex]-intercept of the function [tex]\(f(x) = (x-8)(x+3)\)[/tex] is at the point where [tex]\(x = 0\)[/tex] and [tex]\(y = -24\)[/tex].

Therefore, the [tex]\(y\)[/tex]-intercept of the quadratic function is [tex]\((0, -24)\)[/tex].

The correct answer is:
[tex]\[ (0, -24) \][/tex]