Select the correct answer.

What are the solutions of this quadratic equation?

[tex]\[ x^2 + 4 = 8x + 5 \][/tex]

A. [tex]\( x = 8 \pm \sqrt{34} \)[/tex]

B. [tex]\( x = 8 \pm 2\sqrt{17} \)[/tex]

C. [tex]\( x = 4 \pm \sqrt{7} \)[/tex]

D. [tex]\( x = 4 \pm \sqrt{17} \)[/tex]



Answer :

To solve the quadratic equation [tex]\( x^2 + 4 = 8x + 5 \)[/tex], let's follow a detailed step-by-step process.

1. Rearrange the equation:

Start by moving all terms to one side of the equation to set it equal to zero.

[tex]\[ x^2 + 4 - 8x - 5 = 0 \][/tex]

Simplify the equation:

[tex]\[ x^2 - 8x - 1 = 0 \][/tex]

2. Identify the coefficients:

For a quadratic equation of the form [tex]\( ax^2 + bx + c = 0 \)[/tex], identify the coefficients [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:

[tex]\[ a = 1, \quad b = -8, \quad c = -1 \][/tex]

3. Apply the quadratic formula:

The quadratic formula is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Substitute [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the formula:

[tex]\[ x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \][/tex]

Simplify the terms inside the square root and the expression:

[tex]\[ x = \frac{8 \pm \sqrt{64 + 4}}{2} \][/tex]

Further simplifying:

[tex]\[ x = \frac{8 \pm \sqrt{68}}{2} \][/tex]

Since [tex]\(\sqrt{68} = \sqrt{4 \cdot 17} = 2\sqrt{17}\)[/tex], we have:

[tex]\[ x = \frac{8 \pm 2\sqrt{17}}{2} \][/tex]

Simplify the expression:

[tex]\[ x = 4 \pm \sqrt{17} \][/tex]

So, the solutions to the quadratic equation [tex]\( x^2 + 4 = 8x + 5 \)[/tex] are [tex]\( x = 4 - \sqrt{17} \)[/tex] and [tex]\( x = 4 + \sqrt{17} \)[/tex].

The correct answer is:

D. [tex]\( x = 4 \pm \sqrt{17} \)[/tex]

Other Questions