Answer :

To find the kinetic energy of a toy truck with a mass of [tex]\(0.75 \, \text{kg}\)[/tex] and a velocity of [tex]\(4 \, \text{m/s}\)[/tex], we will use the formula for kinetic energy:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

where:
- [tex]\( KE \)[/tex] is the kinetic energy,
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( v \)[/tex] is the velocity of the object.

Now, let's plug the given values into the formula:

1. Mass ([tex]\( m \)[/tex]): [tex]\( m = 0.75 \, \text{kg} \)[/tex]
2. Velocity ([tex]\( v \)[/tex]): [tex]\( v = 4 \, \text{m/s} \)[/tex]

Step-by-step calculation:
1. Square the velocity:
[tex]\[ v^2 = (4)^2 = 16 \, \text{m}^2/\text{s}^2 \][/tex]

2. Multiply the mass by the squared velocity:
[tex]\[ m \times v^2 = 0.75 \times 16 = 12 \, \text{kg} \cdot \text{m}^2/\text{s}^2 \][/tex]

3. Multiply by [tex]\( \frac{1}{2} \)[/tex]:
[tex]\[ KE = \frac{1}{2} \times 12 = 6 \, \text{J} \][/tex]

After following these steps, the kinetic energy of the toy truck is found to be [tex]\( \boxed{6 \, \text{J}} \)[/tex].