Select the correct answer.

Given the following formula, solve for [tex]\( y \)[/tex]:

[tex]\[ w = \frac{z-y}{2} - z \][/tex]

A. [tex]\( y = 2w + z - x \)[/tex]

B. [tex]\( y = x - (2w + z) \)[/tex]

C. [tex]\( y = x - 2(w + z) \)[/tex]

D. [tex]\( y = 2(w + z) - x \)[/tex]



Answer :

Alright, let's solve the given equation step-by-step to determine the correct answer.

Given the equation:
[tex]\[ w = \frac{z - y}{2} - z \][/tex]

First, clear the fraction by multiplying every term by 2:
[tex]\[ 2w = (z - y) - 2z \][/tex]

Simplify the right-hand side:
[tex]\[ 2w = z - y - 2z \][/tex]
[tex]\[ 2w = -y - z \][/tex]

Next, isolate [tex]\( y \)[/tex] by adding [tex]\( y \)[/tex] and [tex]\( z \)[/tex] to both sides:
[tex]\[ 2w + y + z = 0 \][/tex]

Now, solve for [tex]\( y \)[/tex]:
[tex]\[ y = -2w - z \][/tex]

As a result, the value of [tex]\( y \)[/tex] is:
[tex]\[ y = -2w - z \][/tex]

Now let's match our result [tex]\(-2w - z\)[/tex] with the given options:

- Option A: [tex]\( y = 2w + z - x \)[/tex]
- Option B: [tex]\( y = x - (2w + z) \)[/tex]
- Option C: [tex]\( y = x - 2(w + z) \)[/tex]
- Option D: [tex]\( y = 2(w + z) - x \)[/tex]

From our derived equation, [tex]\( y = -2w - z \)[/tex], we can see it directly matches none of these options when considering that the result must be strictly in terms of [tex]\( w \)[/tex] and [tex]\( z \)[/tex], and our result is not altered by [tex]\( x \)[/tex].

Therefore, the correct answer, based on our calculations, does not correspond to any of the provided options:

Thus, the answer is:
[tex]\[ \text{None of the above} \][/tex]