Using the combined gas law, [tex]\(\frac{P_1 V_1}{T_1}=\frac{P_2 V_2}{T_2}\)[/tex], identify the variables that would be in the numerator (A) and denominator (B) if you were to rearrange the gas law to solve for final pressure.

[tex]\[P_2=\frac{A}{B}\][/tex]

Numerator (A):
- [tex]\(P_1 V_1 T_2\)[/tex]
- [tex]\(P_2 V_2 T_1\)[/tex]
- [tex]\(P_1 V_1\)[/tex]

Denominator (B):
- [tex]\(P_1 V_1 T_2\)[/tex]
- [tex]\(P_2 V_2 T_1\)[/tex]
- [tex]\(T_1 V_2\)[/tex]
- [tex]\(P_1 V_1\)[/tex]



Answer :

To solve for the final pressure [tex]\( P_2 \)[/tex] using the combined gas law, we start with the given equation:

[tex]\[ \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \][/tex]

We need to rearrange this equation to solve for [tex]\( P_2 \)[/tex]. Let's look at the steps involved:

1. Isolate [tex]\( P_2 \)[/tex] on one side of the equation:

[tex]\[ P_2 = \frac{(P_1 V_1 / T_1) \times T_2}{V_2} \][/tex]

2. Simplify the expression:

[tex]\[ P_2 = \frac{P_1 V_1 T_2}{T_1 V_2} \][/tex]

Here we can identify the Numerator (A) and Denominator (B) in the fraction:

- Numerator [tex]\( (A) \)[/tex] :
[tex]\[ P_1 V_1 T_2 \][/tex]

- Denominator [tex]\( (B) \)[/tex] :
[tex]\[ T_1 V_2 \][/tex]

So, when we rearrange the gas law to solve for [tex]\( P_2 \)[/tex], the variables in the numerator [tex]\( (A) \)[/tex] and denominator [tex]\( (B) \)[/tex] are:

- Numerator [tex]\( (A) \)[/tex] :
[tex]\[ P_1 V_1 T_2 \][/tex]

- Denominator [tex]\( (B) \)[/tex] :
[tex]\[ T_1 V_2 \][/tex]

These values correspond to each given option for numerator and denominator provided in the question.