The point [tex]\((0,0)\)[/tex] is a solution to which of these inequalities?

A. [tex]\(y + 7 \ \textless \ 2x - 6\)[/tex]

B. [tex]\(y - 7 \ \textless \ 2x - 6\)[/tex]

C. [tex]\(y + 7 \ \textless \ 2x + 6\)[/tex]

D. [tex]\(y - 6 \ \textless \ 2x - 7\)[/tex]



Answer :

To determine which of the given inequalities the point [tex]\((0,0)\)[/tex] satisfies, we will substitute [tex]\(x = 0\)[/tex] and [tex]\(y = 0\)[/tex] into each inequality and check if it results in a true statement.

Checking Inequality A:
[tex]\[ y + 7 < 2x - 6 \][/tex]
Substitute [tex]\((x, y) = (0, 0)\)[/tex]:
[tex]\[ 0 + 7 < 2(0) - 6 \][/tex]
[tex]\[ 7 < -6 \][/tex]

This statement is false. Therefore, the point [tex]\((0,0)\)[/tex] does not satisfy [tex]\(y + 7 < 2x - 6\)[/tex].

Checking Inequality B:
[tex]\[ y - 7 < 2x - 6 \][/tex]
Substitute [tex]\((x, y) = (0, 0)\)[/tex]:
[tex]\[ 0 - 7 < 2(0) - 6 \][/tex]
[tex]\[ -7 < -6 \][/tex]

This statement is true. Therefore, the point [tex]\((0,0)\)[/tex] satisfies [tex]\(y - 7 < 2x - 6\)[/tex].

Checking Inequality C:
[tex]\[ y + 7 < 2x + 6 \][/tex]
Substitute [tex]\((x, y) = (0, 0)\)[/tex]:
[tex]\[ 0 + 7 < 2(0) + 6 \][/tex]
[tex]\[ 7 < 6 \][/tex]

This statement is false. Therefore, the point [tex]\((0,0)\)[/tex] does not satisfy [tex]\(y + 7 < 2x + 6\)[/tex].

Checking Inequality D:
[tex]\[ y - 6 < 2x - 7 \][/tex]
Substitute [tex]\((x, y) = (0, 0)\)[/tex]:
[tex]\[ 0 - 6 < 2(0) - 7 \][/tex]
[tex]\[ -6 < -7 \][/tex]

This statement is false. Therefore, the point [tex]\((0,0)\)[/tex] does not satisfy [tex]\(y - 6 < 2x - 7\)[/tex].

Summary:
The point [tex]\((0,0)\)[/tex] satisfies only inequality B:
[tex]\[ y - 7 < 2x - 6 \][/tex]

Therefore, the correct answer is:
B. [tex]\( y - 7 < 2 x - 6 \)[/tex]