Answer :
To solve for the value of [tex]\( q \)[/tex] when the value of [tex]\( p \)[/tex] is given, we use the fundamental principle in genetics that the sum of the frequencies of the alleles must be equal to 1. This is stated mathematically as:
[tex]\[ p + q = 1 \][/tex]
Given that [tex]\( p = 0.89 \)[/tex], we need to find [tex]\( q \)[/tex]. We can rearrange the equation to solve for [tex]\( q \)[/tex]:
[tex]\[ q = 1 - p \][/tex]
By substituting the given value of [tex]\( p \)[/tex]:
[tex]\[ q = 1 - 0.89 \][/tex]
Performing the subtraction:
[tex]\[ q = 0.11 \][/tex]
Therefore, the value of [tex]\( q \)[/tex] is [tex]\( 0.11 \)[/tex].
To verify, we look at the provided choices:
A. 0.33
B. 0.89
C. 0.11
D. 0.94
The correct answer is:
C. 0.11
[tex]\[ p + q = 1 \][/tex]
Given that [tex]\( p = 0.89 \)[/tex], we need to find [tex]\( q \)[/tex]. We can rearrange the equation to solve for [tex]\( q \)[/tex]:
[tex]\[ q = 1 - p \][/tex]
By substituting the given value of [tex]\( p \)[/tex]:
[tex]\[ q = 1 - 0.89 \][/tex]
Performing the subtraction:
[tex]\[ q = 0.11 \][/tex]
Therefore, the value of [tex]\( q \)[/tex] is [tex]\( 0.11 \)[/tex].
To verify, we look at the provided choices:
A. 0.33
B. 0.89
C. 0.11
D. 0.94
The correct answer is:
C. 0.11