Drag the tiles to the correct boxes to complete the pairs.

Match each expression to its simplified form.

(6r + 7) + (13 + 7r)
(13 - 3/2r) - (1 - r)
(-8 - r) + (2r - 4)

A. 12r + 20
B. 12 - 1/2r
C. -12 + r



Answer :

To match each expression to its simplified form, let's go through each of the given expressions and pair them correctly with their simplified form.

1. Expression: [tex]\((6 + 7) + (13 + 7)\)[/tex]
- Simplified form: [tex]\(6 + 7 + 13 + 7 = 33\)[/tex]

2. Expression: [tex]\(\left(13 - \frac{3}{2}\right) - (1 - 1)\)[/tex]
- Simplified form: [tex]\(13 - 1.5 - 1 + 1 = 11.5\)[/tex]

3. Expression: [tex]\((-8 - 1) + (2 \cdot 1 - 4)\)[/tex]
- Simplified form: [tex]\(-8 - 1 + 2 - 4 = -11\)[/tex]

Now, assigning the given simplified forms to the expressions in the list:

- [tex]\((6 + 7) + (13 + 7) \rightarrow 33\)[/tex]
- [tex]\(\left(13 - \frac{3}{2}\right) - (1 - 1) \rightarrow 11.5\)[/tex]
- [tex]\((-8 - 1) + (2 \cdot 1 - 4) \rightarrow -11\)[/tex]

Therefore, the simplified form should match as:

- [tex]\( (6 + 7) + (13 + 7) \rightarrow 33 \)[/tex]
- [tex]\(\left(13 - \frac{3}{2}\right) - (1 - 1) \rightarrow 11.5\)[/tex]
- [tex]\((-8 - 1) + (2 \cdot 1 - 4) \rightarrow -11\)[/tex]

Based on the given match:

For the box labeled "-12 + r":

It seems there is a misunderstanding in the options as none of the simplified forms resulted exactly in "-12 + r". The correct form from the valid match above for the given expressions matches appears correctly as:
-33, 11.5 and -11.

Accordingly:

- [tex]\( (6 + 7) + (13 + 7) = 33 \)[/tex]
- [tex]\(\left(13 - \frac{3}{2}\right) - (1 - 1) = 11.5 \)[/tex]
- [tex]\((-8 - 1) + (2 r-4) = -11 \)[/tex]

This Left box (-12 + r\rightarrow mismatch assumed).