Simplify the expression.

[tex]\[
\left(-\frac{11}{2} x + 3 \right) - 2 \left( -\frac{11}{4} x - \frac{5}{2} \right) = \square
\][/tex]



Answer :

To simplify the given expression:
[tex]\[ \left(-\frac{11}{2} x + 3\right) - 2\left(-\frac{11}{4} x - \frac{5}{2}\right) \][/tex]

First, distribute the -2 within the parentheses:
[tex]\[ -2 \left(-\frac{11}{4} x - \frac{5}{2}\right) = -2 \cdot \left(-\frac{11}{4} x\right) - 2 \cdot \left(-\frac{5}{2}\right) \][/tex]

Distribute the -2 to each term:
[tex]\[ -2 \left(-\frac{11}{4} x\right) = \frac{22}{4} x = \frac{11}{2} x \][/tex]
[tex]\[ -2 \left(-\frac{5}{2}\right) = 5 \][/tex]

So, the expression simplifies to:
[tex]\[ \left(-\frac{11}{2} x + 3\right) + \left(\frac{11}{2} x + 5\right) \][/tex]

Now combine the like terms:
[tex]\[ -\frac{11}{2} x + \frac{11}{2} x + 3 + 5 \][/tex]

The [tex]\(\frac{11}{2} x\)[/tex] terms cancel each other out:
[tex]\[ 0x + 3 + 5 = 8 \][/tex]

Therefore, the simplified form of the expression is:
[tex]\[ 8 \][/tex]