Answer :
Of course, let's go through the solution step by step:
We are given the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} x - 3y = 7 \\ 2x + y = 21 \end{array} \right. \][/tex]
Step 1: Solve one of the equations for one variable
First, we solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = 21 \][/tex]
Isolate [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2x \][/tex]
Step 2: Substitute this expression into the other equation
Next, we substitute [tex]\( y = 21 - 2x \)[/tex] into the first equation:
[tex]\[ x - 3(21 - 2x) = 7 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 63 + 6x = 7 \][/tex]
Combine like terms:
[tex]\[ 7x - 63 = 7 \][/tex]
Add 63 to both sides:
[tex]\[ 7x = 70 \][/tex]
Divide by 7:
[tex]\[ x = 10 \][/tex]
Step 3: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]
Substitute [tex]\( x = 10 \)[/tex] back into the expression [tex]\( y = 21 - 2x \)[/tex] to find [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2(10) \][/tex]
Calculate:
[tex]\[ y = 21 - 20 \][/tex]
[tex]\[ y = 1 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 10, \quad y = 1 \][/tex]
So, the solution is [tex]\((x, y) = (10, 1)\)[/tex].
We are given the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} x - 3y = 7 \\ 2x + y = 21 \end{array} \right. \][/tex]
Step 1: Solve one of the equations for one variable
First, we solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = 21 \][/tex]
Isolate [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2x \][/tex]
Step 2: Substitute this expression into the other equation
Next, we substitute [tex]\( y = 21 - 2x \)[/tex] into the first equation:
[tex]\[ x - 3(21 - 2x) = 7 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 63 + 6x = 7 \][/tex]
Combine like terms:
[tex]\[ 7x - 63 = 7 \][/tex]
Add 63 to both sides:
[tex]\[ 7x = 70 \][/tex]
Divide by 7:
[tex]\[ x = 10 \][/tex]
Step 3: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]
Substitute [tex]\( x = 10 \)[/tex] back into the expression [tex]\( y = 21 - 2x \)[/tex] to find [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2(10) \][/tex]
Calculate:
[tex]\[ y = 21 - 20 \][/tex]
[tex]\[ y = 1 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 10, \quad y = 1 \][/tex]
So, the solution is [tex]\((x, y) = (10, 1)\)[/tex].