[tex]\[ 5x + 10y = 18 \][/tex]
[tex]\[ x = y - 6 \][/tex]

Which of the following equations is the result of substituting [tex]\( y - 6 \)[/tex] for [tex]\( x \)[/tex] in the first equation?

A. [tex]\( 5(y - 6) + 10y = 18 \)[/tex]
B. [tex]\( 5x + 10y - 6 = 18 \)[/tex]
C. [tex]\( 5(y - 6) + 10y = 18 \)[/tex]



Answer :

Let's solve the problem step by step.

We are given two equations:
1. [tex]\( 5x + 10y = 18 \)[/tex]
2. [tex]\( x = y - 6 \)[/tex]

We need to substitute [tex]\( y - 6 \)[/tex] for [tex]\( x \)[/tex] in the first equation. Here's the detailed process:

1. Start with the first equation:
[tex]\[ 5x + 10y = 18 \][/tex]

2. Substitute [tex]\( x \)[/tex] with [tex]\( y - 6 \)[/tex]:
[tex]\[ 5(y - 6) + 10y = 18 \][/tex]

3. Distribute the 5 inside the parentheses:
[tex]\[ 5y - 30 + 10y = 18 \][/tex]

So, the resulting equation after substitution is:
[tex]\[ 5y - 30 + 10y = 18 \][/tex]

Among the provided options, the correct one is:

[tex]\[ 5y - 30 + 10y = 18 \][/tex]

So the correct equation is indeed:
[tex]\[ 5y - 30 + 10y = 18 \][/tex]