Which polynomial represents the difference below?

[tex]\[
\begin{array}{r}
2x^2 + 7x + 6 \\
- \left(3x^2 - x\right) \\
\hline
\end{array}
\][/tex]

A. [tex]\(2x^2 + 4x + 6\)[/tex]
B. [tex]\(2x^2 + 5x + 6\)[/tex]
C. [tex]\(-x^2 + 8x + 6\)[/tex]
D. [tex]\(-x^2 + 6x + 6\)[/tex]



Answer :

To find the polynomial that represents the difference between [tex]\(2x^2 + 7x + 6\)[/tex] and [tex]\(3x^2 - x\)[/tex], we can follow these steps:

1. Write the given polynomials:

[tex]\[ 2x^2 + 7x + 6 \][/tex]
[tex]\[ 3x^2 - x \][/tex]

2. Subtract the second polynomial from the first polynomial term-by-term:

- For the [tex]\(x^2\)[/tex] term: [tex]\(2x^2 - 3x^2\)[/tex]
- For the [tex]\(x\)[/tex] term: [tex]\(7x - (-x) = 7x + x\)[/tex]
- For the constant term: [tex]\(6 - 0\)[/tex]

3. Perform the subtraction for each term:

- For the [tex]\(x^2\)[/tex] term: [tex]\(2x^2 - 3x^2 = -x^2\)[/tex]
- For the [tex]\(x\)[/tex] term: [tex]\(7x + x = 8x\)[/tex]
- For the constant term: [tex]\(6 - 0 = 6\)[/tex]

4. Combine the resulting terms to form the final polynomial:

[tex]\[ -x^2 + 8x + 6 \][/tex]

Thus, the polynomial that represents the difference is [tex]\(-x^2 + 8x + 6\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{-x^2 + 8x + 6} \][/tex]

Which corresponds to option:
[tex]\[ \boxed{C} \][/tex]