Determining a Tangent Ratio

What is the value of [tex]\(\tan(60^{\circ})\)[/tex]?

A. [tex]\(\frac{1}{2}\)[/tex]
B. [tex]\(\sqrt{3}\)[/tex]
C. [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
D. [tex]\(\frac{1}{\sqrt{3}}\)[/tex]



Answer :

To determine the value of [tex]\(\tan(60^\circ)\)[/tex], we need to understand the trigonometric properties of special angles. The tangent function, [tex]\(\tan(\theta)\)[/tex], is defined as the ratio of the sine and cosine functions of that angle:

[tex]\[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \][/tex]

For the specific angle [tex]\(\theta = 60^\circ\)[/tex]:

1. The sine of 60 degrees is known to be [tex]\(\sin(60^\circ) = \frac{\sqrt{3}}{2}\)[/tex].
2. The cosine of 60 degrees is known to be [tex]\(\cos(60^\circ) = \frac{1}{2}\)[/tex].

Using these values, we can calculate the tangent of 60 degrees:

[tex]\[ \tan(60^\circ) = \frac{\sin(60^\circ)}{\cos(60^\circ)} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \frac{\sqrt{3}}{2} \times \frac{2}{1} = \sqrt{3} \][/tex]

Therefore, the value of [tex]\(\tan(60^\circ)\)[/tex] is [tex]\(\sqrt{3}\)[/tex].

Given the answer choices:
- [tex]\(\frac{1}{2}\)[/tex]
- [tex]\(\sqrt{3}\)[/tex]
- [tex]\(\frac{\sqrt{3}}{2}\)[/tex]
- [tex]\(\frac{1}{\sqrt{3}}\)[/tex]

The correct answer is [tex]\(\sqrt{3}\)[/tex].