Solve the absolute value inequality for [tex]\( n \)[/tex].

[tex]\[ |2n - 3| \ \textgreater \ 11 \][/tex]

A. [tex]\( n \ \textgreater \ 7 \)[/tex] ; [tex]\( n \ \textgreater \ -4 \)[/tex]

B. [tex]\( n \ \textgreater \ 7 \)[/tex] ; [tex]\( n \ \textless \ -4 \)[/tex]



Answer :

To solve the absolute value inequality [tex]\(|2n - 3| > 11\)[/tex], let's follow these steps:

1. Understand the absolute value inequality: The expression [tex]\(|A| > B\)[/tex] (where [tex]\(A\)[/tex] is an expression and [tex]\(B\)[/tex] is a positive number) can be interpreted as two separate inequalities: [tex]\(A > B\)[/tex] or [tex]\(A < -B\)[/tex].

2. Apply this to our specific inequality:
[tex]\[ |2n - 3| > 11 \][/tex]
This translates into two separate inequalities:
[tex]\[ 2n - 3 > 11 \quad \text{or} \quad 2n - 3 < -11 \][/tex]

3. Solve the first inequality [tex]\(2n - 3 > 11\)[/tex]:
[tex]\[ 2n - 3 > 11 \][/tex]
Add 3 to both sides to isolate terms involving [tex]\(n\)[/tex]:
[tex]\[ 2n > 14 \][/tex]
Divide both sides by 2:
[tex]\[ n > 7 \][/tex]

4. Solve the second inequality [tex]\(2n - 3 < -11\)[/tex]:
[tex]\[ 2n - 3 < -11 \][/tex]
Add 3 to both sides to isolate terms involving [tex]\(n\)[/tex]:
[tex]\[ 2n < -8 \][/tex]
Divide both sides by 2:
[tex]\[ n < -4 \][/tex]

5. Combine the solutions: The solutions to the two inequalities are:
[tex]\[ n > 7 \quad \text{or} \quad n < -4 \][/tex]

Therefore, the solution to the absolute value inequality [tex]\(|2n - 3| > 11\)[/tex] is:
[tex]\[ n > 7 \quad \text{or} \quad n < -4 \][/tex]

This means that [tex]\(n\)[/tex] must be either greater than 7 or less than -4 to satisfy the inequality.