Answer :
To solve the inequality
[tex]\[ \frac{2|x-5|}{7} \geq 10 \][/tex]
we need to isolate the absolute value expression. Let's go through the solution step by step.
1. Eliminate the fraction by multiplying both sides by 7:
[tex]\[ 2|x-5| \geq 70 \][/tex]
2. Divide both sides by 2 to isolate the absolute value expression:
[tex]\[ |x-5| \geq 35 \][/tex]
3. Recall the definition of the absolute value inequality:
[tex]\[ |A| \geq B \][/tex]
This means that:
[tex]\[ A \geq B \quad \text{or} \quad A \leq -B \][/tex]
In our case, [tex]\( A = x-5 \)[/tex] and [tex]\( B = 35 \)[/tex]. Therefore, we have two inequalities to consider:
[tex]\[ x - 5 \geq 35 \quad \text{or} \quad x - 5 \leq -35 \][/tex]
4. Solve each inequality separately:
- For [tex]\( x - 5 \geq 35 \)[/tex]:
[tex]\[ x \geq 35 + 5 \][/tex]
[tex]\[ x \geq 40 \][/tex]
- For [tex]\( x - 5 \leq -35 \)[/tex]:
[tex]\[ x \leq -35 + 5 \][/tex]
[tex]\[ x \leq -30 \][/tex]
So, the complete solution to the inequality is:
[tex]\[ x \leq -30 \quad \text{or} \quad x \geq 40 \][/tex]
Thus, the positive value of [tex]\( x \)[/tex] that satisfies the inequality is when:
[tex]\[ x \geq 40 \][/tex]
Therefore, we can write:
[tex]\[ \begin{array}{l} x \geq 40 \\ x \leq -30 \end{array} \][/tex]
[tex]\[ \frac{2|x-5|}{7} \geq 10 \][/tex]
we need to isolate the absolute value expression. Let's go through the solution step by step.
1. Eliminate the fraction by multiplying both sides by 7:
[tex]\[ 2|x-5| \geq 70 \][/tex]
2. Divide both sides by 2 to isolate the absolute value expression:
[tex]\[ |x-5| \geq 35 \][/tex]
3. Recall the definition of the absolute value inequality:
[tex]\[ |A| \geq B \][/tex]
This means that:
[tex]\[ A \geq B \quad \text{or} \quad A \leq -B \][/tex]
In our case, [tex]\( A = x-5 \)[/tex] and [tex]\( B = 35 \)[/tex]. Therefore, we have two inequalities to consider:
[tex]\[ x - 5 \geq 35 \quad \text{or} \quad x - 5 \leq -35 \][/tex]
4. Solve each inequality separately:
- For [tex]\( x - 5 \geq 35 \)[/tex]:
[tex]\[ x \geq 35 + 5 \][/tex]
[tex]\[ x \geq 40 \][/tex]
- For [tex]\( x - 5 \leq -35 \)[/tex]:
[tex]\[ x \leq -35 + 5 \][/tex]
[tex]\[ x \leq -30 \][/tex]
So, the complete solution to the inequality is:
[tex]\[ x \leq -30 \quad \text{or} \quad x \geq 40 \][/tex]
Thus, the positive value of [tex]\( x \)[/tex] that satisfies the inequality is when:
[tex]\[ x \geq 40 \][/tex]
Therefore, we can write:
[tex]\[ \begin{array}{l} x \geq 40 \\ x \leq -30 \end{array} \][/tex]