The height of a hill, [tex]\( h(x) \)[/tex], in a painting can be written as a function of [tex]\( x \)[/tex], the distance from the left side of the painting. Both [tex]\( h(x) \)[/tex] and [tex]\( x \)[/tex] are measured in inches.

[tex]\[ h(x) = -\frac{1}{5} x (x - 13) \][/tex]

What is the height of the hill in the painting 3 inches from the left side of the picture?

A. 6 inches
B. 13 inches
C. 30 inches
D. 150 inches



Answer :

To find the height of the hill in the painting 3 inches from the left side of the picture, we need to evaluate the given height function [tex]\(h(x)\)[/tex] at [tex]\(x = 3\)[/tex].

The height function is given by:
[tex]\[ h(x) = -\frac{1}{5}x(x - 13) \][/tex]

Let's substitute [tex]\(x = 3\)[/tex] into the height function and calculate [tex]\(h(3)\)[/tex]:

[tex]\[ h(3) = -\frac{1}{5} \cdot 3 \cdot (3 - 13) \][/tex]

First, calculate the expression inside the parentheses:

[tex]\[ 3 - 13 = -10 \][/tex]

Next, multiply [tex]\(3\)[/tex] by [tex]\(-10\)[/tex]:

[tex]\[ 3 \cdot (-10) = -30 \][/tex]

Now, multiply [tex]\(-\frac{1}{5}\)[/tex] by [tex]\(-30\)[/tex]:

[tex]\[ -\frac{1}{5} \cdot (-30) = 6 \][/tex]

So, the height of the hill [tex]\(3\)[/tex] inches from the left side of the painting is:

[tex]\[ h(3) = 6 \][/tex]

Therefore, the height of the hill in the painting 3 inches from the left side is:
[tex]\[ 6 \text{ inches} \][/tex]