Simplify the expression [tex]\(\frac{\left(2 \pi y^{-2}\right)^{\frac{1}{3}}}{y^{-\frac{2}{3}}}\)[/tex] and write it without negative exponents: [tex]\(\boxed{\ }\)[/tex]



Answer :

To simplify the expression [tex]\(\frac{\left(2 \pi y^{-2}\right)^{\frac{1}{3}}}{y^{-\frac{2}{3}}}\)[/tex], we will follow these steps:

1. Simplify the Numerator:

Consider the term [tex]\(\left(2 \pi y^{-2}\right)^{\frac{1}{3}}\)[/tex]:
[tex]\[ \left(2 \pi y^{-2}\right)^{\frac{1}{3}} \][/tex]
We can distribute the exponent [tex]\(\frac{1}{3}\)[/tex] to each part inside the parentheses:
[tex]\[ = \left(2 \pi\right)^{\frac{1}{3}} \cdot \left(y^{-2}\right)^{\frac{1}{3}} \][/tex]
Recall the exponent rule [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[ = \left(2 \pi\right)^{\frac{1}{3}} \cdot y^{- \frac{2}{3}} \][/tex]
Therefore, the numerator simplifies to:
[tex]\[ \left(2 \pi\right)^{\frac{1}{3}} y^{- \frac{2}{3}} \][/tex]

2. Simplify the Denominator:

The denominator is already simplified:
[tex]\[ y^{- \frac{2}{3}} \][/tex]

3. Combine the Simplified Numerator and Denominator:

Now, we substitute the simplified forms of the numerator and the denominator back into the fraction:
[tex]\[ \frac{\left(2 \pi\right)^{\frac{1}{3}} y^{- \frac{2}{3}}}{y^{- \frac{2}{3}}} \][/tex]

4. Cancel Common Terms:

Notice that [tex]\(y^{- \frac{2}{3}}\)[/tex] in the numerator and the denominator can cancel each other out:
[tex]\[ = \left(2 \pi\right)^{\frac{1}{3}} \][/tex]

The simplified expression is:
[tex]\[ \boxed{\left(2 \pi\right)^{\frac{1}{3}}} \][/tex]