Complete the table to represent the inverse of function [tex]\( f \)[/tex].

Given table for function [tex]\( f \)[/tex]:

[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & -3 & 2 & 3 & 7 \\
\hline
y & -2 & 8 & 10 & 18 \\
\hline
\end{array}
\][/tex]

Inverse of function [tex]\( f \)[/tex]:

[tex]\[
\begin{array}{|c|c|c|c|c|}
\hline
x & -2 & 8 & 10 & 18 \\
\hline
y & \square & \square & \square & \square \\
\hline
\end{array}
\][/tex]



Answer :

To find the inverse of the function [tex]\( f \)[/tex], we need to swap the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values from the given table.

Given table for function [tex]\( f \)[/tex]:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -3 & 2 & 3 & 7 \\ \hline y & -2 & 8 & 10 & 18 \\ \hline \end{array} \][/tex]

The values for the inverse function [tex]\( f^{-1} \)[/tex] are obtained by swapping [tex]\( x \)[/tex] with [tex]\( y \)[/tex]:

[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -2 & 8 & 10 & 18 \\ \hline y & -3 & 2 & 3 & 7 \\ \hline \end{array} \][/tex]

So the completed table for the inverse of function [tex]\( f \)[/tex] is:
[tex]\[ \begin{array}{|c|c|c|c|c|} \hline x & -2 & 8 & 10 & 18 \\ \hline y & -3 & 2 & 3 & 7 \\ \hline \end{array} \][/tex]