A sequence of transformations maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A^{\circ}B^{\circ}C^{\circ} \)[/tex].

The type of transformation that maps [tex]\( \triangle ABC \)[/tex] onto [tex]\( \triangle A^{\prime}B^{\prime}C \)[/tex] is a __________.

When [tex]\( \triangle A^{\prime}B^{\prime}C \)[/tex] is reflected across the line [tex]\( x = -2 \)[/tex] to form [tex]\( \triangle A^\ \textless \ em\ \textgreater \ B^\ \textless \ /em\ \textgreater \ C^* \)[/tex], vertex __________ of [tex]\( \triangle A^{\circ}B^{\circ}C^{\circ} \)[/tex] will have the same coordinates as [tex]\( B^{\prime} \)[/tex].



Answer :

A sequence of transformations maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A^{\circ}B^{\circ}C^{\circ}$[/tex]. The type of transformation that maps [tex]$\triangle ABC$[/tex] onto [tex]$\triangle A'B'C$[/tex] is a rotation. When [tex]$\triangle A'B'C$[/tex] is reflected across the line [tex]$x=-2$[/tex] to form [tex]$\triangle A^ B^ C^*$[/tex], vertex B' of [tex]$\triangle A^{\circ}B^{\circ}C^{\circ}$[/tex] will have the same coordinates as [tex]$B'$[/tex].