Step 3: Fill in the missing numbers

[tex]\[
\begin{array}{ccccc}
2 & 1 & -3 & -10 & 24 \\
& b & d & \\
1 & c \\
\end{array}
\][/tex]

[tex]\( b = \square \)[/tex]

[tex]\( c = \square \)[/tex]

[tex]\( d = \square \)[/tex]



Answer :

Sure, let's solve for the missing numbers step-by-step.

1. Let's start with the sequence and the operations involved in deriving the missing numbers:
[tex]\[ \begin{array}{cccc} 1 & -3 & -10 & 24 \\ & b & d & \\ 1 & c \end{array} \][/tex]

2. Finding [tex]\( b \)[/tex]:

Based on the sequence, the relationship given is:
[tex]\[ 2 \times 1 + a = b \][/tex]
From the given array, [tex]\( a = -3 \)[/tex]:
[tex]\[ 2 \times 1 + (-3) = b \][/tex]
Solving that:
[tex]\[ 2 - 3 = -1 \][/tex]
Therefore:
[tex]\[ b = -1 \][/tex]

3. Finding [tex]\( c \)[/tex]:

The next relationship is:
[tex]\[ 2 \times (-3) + b = c \][/tex]
Substitute [tex]\( b = -1 \)[/tex]:
[tex]\[ 2 \times (-3) + (-1) = c \][/tex]
Solving that:
[tex]\[ -6 - 1 = -7 \][/tex]
Therefore:
[tex]\[ c = -7 \][/tex]

4. Finding [tex]\( d \)[/tex]:

The final relationship is:
[tex]\[ 2 \times (-10) + c = d \][/tex]
Substitute [tex]\( c = -7 \)[/tex]:
[tex]\[ 2 \times (-10) + (-7) = d \][/tex]
Solving that:
[tex]\[ -20 - 7 = -27 \][/tex]
Therefore:
[tex]\[ d = -27 \][/tex]

So the missing numbers are:
[tex]\[ \begin{aligned} b &= -1 \\ c &= -7 \\ d &= -27 \end{aligned} \][/tex]