Simplify the following expression, if possible. Leave your answer in terms of [tex]\(\sin(\theta)\)[/tex] and [tex]\(\cos(\theta)\)[/tex].

[tex]\[
(\sin(\theta) - \cos(\theta))^2 = \square
\][/tex]



Answer :

To simplify the expression [tex]\((\sin(\theta) - \cos(\theta))^2\)[/tex], we will follow a step-by-step approach.

### Step 1: Expand using the Binomial Theorem

Recall that [tex]\((a - b)^2\)[/tex] can be expanded using the binomial theorem as:
[tex]\[ (a - b)^2 = a^2 - 2ab + b^2 \][/tex]

Here, [tex]\(a = \sin(\theta)\)[/tex] and [tex]\(b = \cos(\theta)\)[/tex]. Substituting these values into the binomial expansion, we get:
[tex]\[ (\sin(\theta) - \cos(\theta))^2 = \sin^2(\theta) - 2\sin(\theta)\cos(\theta) + \cos^2(\theta) \][/tex]

### Step 2: Use the Pythagorean Identity

There is a well-known trigonometric identity, called the Pythagorean identity, which states:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]

Using this identity, we can substitute the sum [tex]\(\sin^2(\theta) + \cos^2(\theta)\)[/tex] with [tex]\(1\)[/tex].

### Step 3: Substitute and Simplify

Substitute the Pythagorean identity into our expanded expression:
[tex]\[ \sin^2(\theta) - 2\sin(\theta)\cos(\theta) + \cos^2(\theta) \][/tex]
[tex]\[ = (\sin^2(\theta) + \cos^2(\theta)) - 2\sin(\theta)\cos(\theta) \][/tex]
[tex]\[ = 1 - 2\sin(\theta)\cos(\theta) \][/tex]

### Final Simplified Expression

Therefore, the simplified form of the given expression is:
[tex]\[ (\sin(\theta) - \cos(\theta))^2 = 1 - 2\sin(\theta)\cos(\theta) \][/tex]

So the final answer is:
[tex]\[ 1 - 2\sin(\theta)\cos(\theta) \][/tex]