What is the midpoint of the line segment with endpoints [tex]\((3.5, 2.2)\)[/tex] and [tex]\((1.5, -4.8)\)[/tex]?

A. [tex]\((2.5, -2.6)\)[/tex]
B. [tex]\((2.5, -1.3)\)[/tex]
C. [tex]\((5, -1.3)\)[/tex]
D. [tex]\((5, -2.6)\)[/tex]



Answer :

To find the midpoint of a line segment with given endpoints [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], we use the midpoint formula:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the endpoints [tex]\((3.5, 2.2)\)[/tex] and [tex]\((1.5, -4.8)\)[/tex], let's substitute these values into the formula.

First, calculate the x-coordinate of the midpoint:
[tex]\[ \text{Midpoint } x = \frac{3.5 + 1.5}{2} = \frac{5}{2} = 2.5 \][/tex]

Next, calculate the y-coordinate of the midpoint:
[tex]\[ \text{Midpoint } y = \frac{2.2 + (-4.8)}{2} = \frac{2.2 - 4.8}{2} = \frac{-2.6}{2} = -1.3 \][/tex]

Therefore, the coordinates of the midpoint are [tex]\((2.5, -1.3)\)[/tex].

So, the correct answer is:
B. [tex]\((2.5, -1.3)\)[/tex]