Which expressions are equivalent to the one below? Check all that apply.

[tex]\[ 4^3 \cdot 4^x \][/tex]

A. [tex]\(4^{3-x}\)[/tex]

B. [tex]\(4^{3+x}\)[/tex]

C. [tex]\((4 \cdot x)^3\)[/tex]

D. [tex]\(64 \cdot 4^x\)[/tex]

E. [tex]\(16^{3 x}\)[/tex]

F. [tex]\(4^{3 x}\)[/tex]



Answer :

To determine which expressions are equivalent to [tex]\( 4^3 \cdot 4^x \)[/tex], let's start by simplifying the original expression.

Given:
[tex]\[ 4^3 \cdot 4^x \][/tex]

Using the property of exponents that states [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex], we can combine the exponents:

[tex]\[ 4^3 \cdot 4^x = 4^{3+x} \][/tex]

So, the simplified form of the original expression is [tex]\( 4^{3+x} \)[/tex].

Now, let's check each given expression to see if it matches [tex]\( 4^{3+x} \)[/tex].

A. [tex]\( 4^{3-x} \)[/tex]:

This expression does not match [tex]\( 4^{3+x} \)[/tex]. Thus, it is not equivalent.

B. [tex]\( 4^{3+x} \)[/tex]:

This matches the simplified form exactly. Thus, it is equivalent.

C. [tex]\( (4 \cdot x)^3 \)[/tex]:

Simplifying this expression:
[tex]\[ (4 \cdot x)^3 = 4^3 \cdot x^3 \][/tex]
This does not match [tex]\( 4^{3+x} \)[/tex]. Thus, it is not equivalent.

D. [tex]\( 64 \cdot 4^x \)[/tex]:

Simplify [tex]\( 64\)[/tex]:
[tex]\[ 64 = 4^3 \][/tex]

Rewrite the expression using this fact:
[tex]\[ 64 \cdot 4^x = 4^3 \cdot 4^x \][/tex]
Which simplifies to:
[tex]\[ 4^{3+x} \][/tex]

This matches the simplified form exactly. Thus, it is equivalent.

E. [tex]\( 16^{3 x} \)[/tex]:

Rewrite 16 as [tex]\( 4^2 \)[/tex]:
[tex]\[ 16 = 4^2 \][/tex]

So:
[tex]\[ 16^{3 x} = (4^2)^{3 x} \][/tex]
Using the power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:
[tex]\[ (4^2)^{3 x} = 4^{2 \cdot 3 x} = 4^{6 x} \][/tex]

This does not match [tex]\( 4^{3+x} \)[/tex]. Thus, it is not equivalent.

F. [tex]\( 4^{3 x} \)[/tex]:

This does not match [tex]\( 4^{3+x} \)[/tex]. Thus, it is not equivalent.

So, the expressions that are equivalent to [tex]\( 4^3 \cdot 4^x \)[/tex] are:

B. [tex]\( 4^{3+x} \)[/tex]
D. [tex]\( 64 \cdot 4^x \)[/tex]