Answer :
To solve the equation [tex]\(\frac{x}{-4} = 8\)[/tex], we need to isolate [tex]\(x\)[/tex]. Here are the steps:
1. Start with the given equation:
[tex]\[ \frac{x}{-4} = 8 \][/tex]
2. To isolate [tex]\(x\)[/tex], we need to eliminate the denominator [tex]\(-4\)[/tex]. We can do this by multiplying both sides of the equation by [tex]\(-4\)[/tex]:
[tex]\[ \left( \frac{x}{-4} \right) \times -4 = 8 \times -4 \][/tex]
3. On the left side, multiplying [tex]\(\frac{x}{-4}\)[/tex] by [tex]\(-4\)[/tex] cancels out the [tex]\(-4\)[/tex], leaving us with [tex]\(x\)[/tex]:
[tex]\[ x = 8 \times -4 \][/tex]
4. Calculate the right side:
[tex]\[ 8 \times -4 = -32 \][/tex]
So, the solution to the equation is:
[tex]\[ x = -32 \][/tex]
The correct answer is [tex]\(\boxed{A}\)[/tex].
1. Start with the given equation:
[tex]\[ \frac{x}{-4} = 8 \][/tex]
2. To isolate [tex]\(x\)[/tex], we need to eliminate the denominator [tex]\(-4\)[/tex]. We can do this by multiplying both sides of the equation by [tex]\(-4\)[/tex]:
[tex]\[ \left( \frac{x}{-4} \right) \times -4 = 8 \times -4 \][/tex]
3. On the left side, multiplying [tex]\(\frac{x}{-4}\)[/tex] by [tex]\(-4\)[/tex] cancels out the [tex]\(-4\)[/tex], leaving us with [tex]\(x\)[/tex]:
[tex]\[ x = 8 \times -4 \][/tex]
4. Calculate the right side:
[tex]\[ 8 \times -4 = -32 \][/tex]
So, the solution to the equation is:
[tex]\[ x = -32 \][/tex]
The correct answer is [tex]\(\boxed{A}\)[/tex].