Answer :
To find the exact value of [tex]\(\tan 30^\circ \times \sin 60^\circ\)[/tex], let's break it down step by step.
1. Determine [tex]\(\tan 30^\circ\)[/tex]:
The tangent of 30 degrees is a well-known trigonometric value:
[tex]\[ \tan 30^\circ = \frac{1}{\sqrt{3}} \][/tex]
2. Determine [tex]\(\sin 60^\circ\)[/tex]:
The sine of 60 degrees is also a fundamental trigonometric value:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \][/tex]
3. Multiply these values together:
Now, multiply [tex]\(\tan 30^\circ\)[/tex] by [tex]\(\sin 60^\circ\)[/tex]:
[tex]\[ \tan 30^\circ \times \sin 60^\circ = \left( \frac{1}{\sqrt{3}} \right) \times \left( \frac{\sqrt{3}}{2} \right) \][/tex]
4. Simplify the expression:
Simplify the product:
[tex]\[ \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2} = \frac{1 \cdot \sqrt{3}}{\sqrt{3} \cdot 2} = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2} \][/tex]
Therefore, the exact value of [tex]\(\tan 30^\circ \times \sin 60^\circ\)[/tex] is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]
1. Determine [tex]\(\tan 30^\circ\)[/tex]:
The tangent of 30 degrees is a well-known trigonometric value:
[tex]\[ \tan 30^\circ = \frac{1}{\sqrt{3}} \][/tex]
2. Determine [tex]\(\sin 60^\circ\)[/tex]:
The sine of 60 degrees is also a fundamental trigonometric value:
[tex]\[ \sin 60^\circ = \frac{\sqrt{3}}{2} \][/tex]
3. Multiply these values together:
Now, multiply [tex]\(\tan 30^\circ\)[/tex] by [tex]\(\sin 60^\circ\)[/tex]:
[tex]\[ \tan 30^\circ \times \sin 60^\circ = \left( \frac{1}{\sqrt{3}} \right) \times \left( \frac{\sqrt{3}}{2} \right) \][/tex]
4. Simplify the expression:
Simplify the product:
[tex]\[ \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{2} = \frac{1 \cdot \sqrt{3}}{\sqrt{3} \cdot 2} = \frac{\sqrt{3}}{2\sqrt{3}} = \frac{1}{2} \][/tex]
Therefore, the exact value of [tex]\(\tan 30^\circ \times \sin 60^\circ\)[/tex] is:
[tex]\[ \boxed{\frac{1}{2}} \][/tex]