A sequence of numbers is formed by the iterative process:

[tex]\[ u_{n+1} = \frac{3}{u_n + 1}, \quad u_1 = 4 \][/tex]

Work out the values of [tex]\( u_2 \)[/tex] and [tex]\( u_3 \)[/tex].

[tex]\[ u_2 = \][/tex]

[tex]\[ u_3 = \][/tex]



Answer :

To find the values of [tex]\( u_2 \)[/tex] and [tex]\( u_3 \)[/tex] for the given sequence defined by the recurrence relation:

[tex]\[ u_{n+1} = \frac{3}{u_n + 1}, \quad u_1 = 4 \][/tex]

we proceed as follows:

1. Calculate [tex]\( u_2 \)[/tex]:
[tex]\[ u_2 = \frac{3}{u_1 + 1} \][/tex]
Given [tex]\( u_1 = 4 \)[/tex], substitute this value into the equation:
[tex]\[ u_2 = \frac{3}{4 + 1} = \frac{3}{5} = 0.6 \][/tex]

2. Calculate [tex]\( u_3 \)[/tex]:
[tex]\[ u_3 = \frac{3}{u_2 + 1} \][/tex]
Substitute the value of [tex]\( u_2 \)[/tex]:
[tex]\[ u_2 = 0.6 \][/tex]
Thus,
[tex]\[ u_3 = \frac{3}{0.6 + 1} = \frac{3}{1.6} = 1.875 \][/tex]

Therefore, the values are:

[tex]\[ u_2 = 0.6 \][/tex]

[tex]\[ u_3 = 1.875 \][/tex]